Câu hỏi:
05/02/2023 1,260
Cho mặt phẳng \[\left( \alpha \right)\] và đường thẳng \[d\not \subset \left( \alpha \right)\]. Khẳng định nào sau đây SAI?
Câu hỏi trong đề: Bộ 20 đề thi học kì 1 Toán 11 năm 2022 - 2023 có đáp án !!
Quảng cáo
Trả lời:
Đáp án B
Phương pháp giải:
Giải chi tiết:
Khẳng định SAI là: Nếu d song song với \[\left( \alpha \right)\] và đường thẳng \[d' \subset \left( \alpha \right)\] thì d’ song song với d.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Giải chi tiết:
a) Trong (ABCD), gọi \[I = MN \cap AD,\]\[J = MN \cap CD\], \[F = MN \cap BD\]
Trong (SBD), gọi \[K = EF \cap SD\]
Trong (SAD), gọi \[Q = IK \cap SA\]
Trong (SAD), gọi \[P = JK \cap SC\]
Khi đó, thiết diện của hình chóp \[S.ABCD\] cắt bởi mặt phẳng \[\left( {MNE} \right)\] là ngũ giác \[MNPKQ\]
b) MN là đường trung bình của \[\Delta ABC \Rightarrow MN//AC\]
\[ \Rightarrow MF{\rm{//}}AC \Rightarrow \] F là trung điểm của OB \[ \Rightarrow BF = \frac{1}{2}OB = \frac{1}{4}BD \Rightarrow BF = \frac{1}{3}FD\]
Xét \[\Delta SOB\] có: E, F lần lượt là trung điểm của SO, OB \[ \Rightarrow EF\] là đường trung bình của \[\Delta SOB\]
\[ \Rightarrow EF{\rm{//}}SB \Rightarrow FK{\rm{//}}SB \Rightarrow \frac{{KS}}{{KD}} = \frac{{BF}}{{DF}} = \frac{1}{3}\]
Vậy, \[\frac{{KS}}{{KD}} = \frac{1}{3}\]
Lời giải
Đáp án D
Phương pháp giải:
Sử dụng công thức nhân đôi: \[\cos 2x = 1 - 2{\sin ^2}x\]
Giải chi tiết:
Ta có: \[{\sin ^2}x = 1 \Leftrightarrow \cos 2x = 1 - 2{\sin ^2}x = 1 - 2.1 = - 1\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.