Câu hỏi:

05/02/2023 1,832

Cho hình chóp S.ABCD có đáy ABCD là hình thang với các cạnh đáy AB, CD. Gọi I, J lần lượt là trung điểm của AD, BC và G là trọng tâm tam giác SAB. Điều kiện nào của AB và CD để thiết diện của hình chóp khi cắt bởi mặt phẳng (IJG) là hình bình hành?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Phương pháp giải:

Dựa vào các yếu tố song song xác định thiết diện.

Giải chi tiết:

Media VietJack

Qua G dựng EF song song AB (\[E \in SB,F \in SA\])

IJ là đường trung bình của hình thang ABCD \[ \Rightarrow \left\{ {\begin{array}{*{20}{l}}{IJ{\rm{//}}AB{\rm{//}}CD}\\{IJ = \frac{{AB + CD}}{2}}\end{array}} \right.\]

Ta có: \[\left\{ {\begin{array}{*{20}{l}}{IJ{\rm{//}}AB}\\{AB{\rm{//}}EF}\end{array}} \right. \Rightarrow IJ{\rm{//}}EF \Rightarrow I,J,E,F\] đồng phẳng

\[ \Rightarrow I,J,E,F,G\] đồng phẳng

\[ \Rightarrow \left( {GIJ} \right) \equiv \left( {IJEF} \right)\]

Thiết diện của \[\left( {GIJ} \right)\] với hình chóp là hình thang \[IJEF,{\mkern 1mu} \left( {IJ{\rm{//}}EF} \right)\]

Để thiết diện là hình bình hành thì \[IJ = EF \Leftrightarrow \frac{{AB + CD}}{2} = \frac{2}{3}AB\] (do \[\frac{{EF}}{{AB}} = \frac{{SE}}{{SB}} = \frac{{SG}}{{SM}} = \frac{2}{3}\])

\[ \Leftrightarrow 3AB + 3CD = 4AB \Leftrightarrow AB = 3CD\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giải chi tiết:

Media VietJack

a) Trong (ABCD), gọi \[I = MN \cap AD,\]\[J = MN \cap CD\], \[F = MN \cap BD\]

Trong (SBD), gọi \[K = EF \cap SD\]

Trong (SAD), gọi \[Q = IK \cap SA\]

Trong (SAD), gọi \[P = JK \cap SC\]

Khi đó, thiết diện của hình chóp \[S.ABCD\] cắt bởi mặt phẳng \[\left( {MNE} \right)\] là ngũ giác \[MNPKQ\]

b) MN là đường trung bình của \[\Delta ABC \Rightarrow MN//AC\]

\[ \Rightarrow MF{\rm{//}}AC \Rightarrow \] F là trung điểm của OB \[ \Rightarrow BF = \frac{1}{2}OB = \frac{1}{4}BD \Rightarrow BF = \frac{1}{3}FD\]

Xét \[\Delta SOB\] có: E, F lần lượt là trung điểm của SO, OB \[ \Rightarrow EF\] là đường trung bình của \[\Delta SOB\]

\[ \Rightarrow EF{\rm{//}}SB \Rightarrow FK{\rm{//}}SB \Rightarrow \frac{{KS}}{{KD}} = \frac{{BF}}{{DF}} = \frac{1}{3}\]

Vậy, \[\frac{{KS}}{{KD}} = \frac{1}{3}\]

Câu 2

Lời giải

Đáp án D

Phương pháp giải:

Sử dụng công thức nhân đôi: \[\cos 2x = 1 - 2{\sin ^2}x\]

Giải chi tiết:

Ta có: \[{\sin ^2}x = 1 \Leftrightarrow \cos 2x = 1 - 2{\sin ^2}x = 1 - 2.1 = - 1\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP