Câu hỏi:

11/07/2024 281

Tính giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên khoảng \[\left[ { - \frac{\pi }{3};\frac{\pi }{2}} \right]\]

\[y = \cos 2x + \sin {\mkern 1mu} x - \sqrt 3 \left( {\sin 2x + \cos x} \right) + 3\]

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp giải:

\[\sin \left( {a \pm b} \right) = \sin a\cos b \pm \cos a\sin b\]

\[\cos \left( {a \pm b} \right) = \cos a\cos b \mp \sin a\sin b\]

Giải chi tiết:

\[y = \cos 2x + \sin {\mkern 1mu} x - \sqrt 3 \left( {\sin 2x + \cos x} \right) + 3\]\[ \Leftrightarrow y = \left( {\cos 2x - \sqrt 3 \sin 2x} \right) + \left( {\sin {\mkern 1mu} x - \sqrt 3 \cos x} \right) + 3\]

\[ \Leftrightarrow y = - 2\left( {\frac{{ - 1}}{2}\cos 2x + \frac{{\sqrt 3 }}{2}\sin 2x} \right) + 2\left( {\frac{1}{2}\sin {\mkern 1mu} x - \frac{{\sqrt 3 }}{2}\cos x} \right) + 3\]

\[ \Leftrightarrow y = - 2\left( {\cos \frac{{2\pi }}{3}\cos 2x + \sin \frac{{2\pi }}{3}\sin 2x} \right) + 2\left( {\cos \frac{\pi }{3}\sin {\mkern 1mu} x - \sin \frac{\pi }{3}\cos x} \right) + 3\]

\[ \Leftrightarrow y = - 2\cos \left( {2x - \frac{{2\pi }}{3}} \right) + 2\sin \left( {x - \frac{\pi }{3}} \right) + 3\]\[ \Leftrightarrow y = 4{\sin ^2}\left( {x - \frac{\pi }{3}} \right) + 2\sin \left( {x - \frac{\pi }{3}} \right) + 1\]

Ta có: \[x \in \left[ { - \frac{\pi }{3};\frac{\pi }{2}} \right] \Leftrightarrow x - \frac{\pi }{3} \in \left[ { - \frac{{2\pi }}{3};\frac{\pi }{6}} \right]{\mkern 1mu} \]

Khi đó: \[\sin \left( {x - \frac{\pi }{3}} \right) \in \left[ { - \frac{{\sqrt 3 }}{2};\frac{1}{2}} \right]{\mkern 1mu} \Leftrightarrow 2\sin \left( {x - \frac{\pi }{3}} \right) \in \left[ { - \sqrt 3 ;1} \right]{\mkern 1mu} \]

Xét hàm số \[f\left( t \right) = {t^2} + t + 1,{\mkern 1mu} {\mkern 1mu} t \in \left[ { - \sqrt 3 ;1} \right],{\mkern 1mu} {\mkern 1mu} f'\left( t \right) = 2t + 1 = 0 \Leftrightarrow t = - \frac{1}{2}\]

Hàm số \[f\left( t \right)\] liên tục trên đoạn \[\left[ { - \sqrt 3 ;1} \right]\] \[f\left( { - \sqrt 3 } \right) = 4 - \sqrt 3 ,{\mkern 1mu} {\mkern 1mu} f\left( { - \frac{1}{2}} \right) = \frac{3}{4},{\mkern 1mu} {\mkern 1mu} f\left( 1 \right) = 3\]

\[ \Rightarrow \mathop {\min }\limits_{\left[ { - \sqrt 3 ;1} \right]} f\left( t \right) = f\left( { - \frac{1}{2}} \right) = \frac{3}{4},{\mkern 1mu} {\mkern 1mu} \mathop {\max }\limits_{\left[ { - \sqrt 3 ;1} \right]} f\left( t \right) = f\left( 1 \right) = 3\]\[ \Rightarrow \mathop {\min }\limits_{\left[ { - \frac{\pi }{3};\frac{\pi }{2}} \right]} y = \frac{3}{4},{\mkern 1mu} {\mkern 1mu} \mathop {\max }\limits_{\left[ { - \frac{\pi }{3};\frac{\pi }{2}} \right]} y = 3\]

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình bình hành tâm O. Gọi M, N, E lần lượt là trung điểm của AB, BC, SO.

 a) Xác định thiết diện của hình chóp \[S.ABCD\] cắt bởi mặt phẳng \[\left( {MNE} \right)\].

 b) Mặt phẳng \[\left( {MNE} \right)\] cắt SD tại K, tính tỉ số \[\frac{{KS}}{{KD}}\].

Xem đáp án » 13/07/2024 4,815

Câu 2:

Phương trình \[{\sin ^2}x = 1\] tương đương với phương trình nào sau đây?

Xem đáp án » 05/02/2023 2,489

Câu 3:

Trên khoảng \[\left( { - \frac{{3\pi }}{4};\frac{\pi }{4}} \right)\] tập giá trị của hàm số \[y = \cos x\] là:

Xem đáp án » 05/02/2023 1,652

Câu 4:

d. Cho 15 viên bi, trong đó có 4 viên bi màu đỏ, 5 viên bi màu vàng, 6 viên bi màu xanh. Chọn ngẫu nhiên 3 viên vi trong 15 viên bi nói trên. Tính xác suất để chọn được đúng 2 viên bi màu xanh.

Xem đáp án » 13/07/2024 1,618

Câu 5:

Cho hình chóp S.ABCD có đáy ABCD là hình thang với các cạnh đáy AB, CD. Gọi I, J lần lượt là trung điểm của AD, BC và G là trọng tâm tam giác SAB. Điều kiện nào của AB và CD để thiết diện của hình chóp khi cắt bởi mặt phẳng (IJG) là hình bình hành?

Xem đáp án » 05/02/2023 1,562

Câu 6:

Có bao nhiêu cách sắp xếp 6 học sinh lớp 11 và 3 học sinh lớp 12 vào một hàng ghế dài gồm 9 ghế sao cho mỗi học sinh lớp 12 ngồi giữa 2 học sinh lớp 11?

Xem đáp án » 05/02/2023 1,448

Câu 7:

Cho mặt phẳng \[\left( \alpha \right)\] và đường thẳng \[d\not \subset \left( \alpha \right)\]. Khẳng định nào sau đây SAI?

Xem đáp án » 05/02/2023 1,213