Câu hỏi:
05/02/2023 183Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án A
Phương pháp giải:
Cho \[d{\rm{//}}d'\], lấy \[A \in d\], \[{T_{\vec v}}:A \mapsto A' \in d'{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \Rightarrow {T_{\vec v}}:d \mapsto d'\].
Giải chi tiết:
Dễ dàng kiểm tra được \[\left( d \right):2x - y + 1 = 0\] và \[\left( {d'} \right):2x - y + 5 = 0\] song song với nhau.
Lấy \[A\left( {0;1} \right) \in d\], phép tịnh tiến \[{T_{\vec v\left( {a;b} \right)}}:A \mapsto A'{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{{x_{A'}} = a}\\{{y_{A'}} = 1 + b}\end{array}} \right.\]
Để phép tịnh tiến theo vectơ \[\vec v\] nào sau đây biến d thành d’ thì
\[A'{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \in d' \Leftrightarrow 2.a - \left( {1 + b} \right) + 5 = 0 \Leftrightarrow 2a - b + 4 = 0\]
Kiểm tra các đáp án, ta thấy: \[\vec v = \left( {1;6} \right)\] thỏa mãn.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình bình hành tâm O. Gọi M, N, E lần lượt là trung điểm của AB, BC, SO.
a) Xác định thiết diện của hình chóp \[S.ABCD\] cắt bởi mặt phẳng \[\left( {MNE} \right)\].
b) Mặt phẳng \[\left( {MNE} \right)\] cắt SD tại K, tính tỉ số \[\frac{{KS}}{{KD}}\].
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Câu 7:
về câu hỏi!