Câu hỏi:

05/02/2023 374

Gọi S là tập hợp tất cả các số thực m để phương trình \[4{\cos ^3}x + 2\cos 2x + 2 = \left( {m + 3} \right)\cos x\] có đúng 5 nghiệm thuộc \[\left( { - \frac{\pi }{2};2\pi } \right]\]. Kết luận nào sau đây đúng?

Đáp án chính xác

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Phương pháp giải:

Giải chi tiết:

Media VietJack

Ta có:

\[{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} 4{\cos ^3}x + 2\cos 2x + 2 = \left( {m + 3} \right)\cos x{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} (*){\mkern 1mu} \]

\[ \Leftrightarrow 4{\cos ^3}x + 4{\cos ^2}x - \left( {m + 3} \right)\cos x = 0\]

\[ \Leftrightarrow \left( {4{{\cos }^2}x + 2\cos x - \left( {m + 3} \right)} \right).\cos x = 0\]

\[ \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{4{{\cos }^2}x + 4\cos x - \left( {m + 3} \right) = 0{\mkern 1mu} {\mkern 1mu} (1)}\\{\cos x = 0{\mkern 1mu} {\mkern 1mu} (2)}\end{array}} \right.\]

Phương trình \[(2) \Leftrightarrow x = \frac{\pi }{2} + k\pi {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( {k \in Z} \right)\]. Mà \[x \in \left( { - \frac{\pi }{2};2\pi } \right] \Rightarrow \left[ {\begin{array}{*{20}{l}}{x = \frac{\pi }{2}}\\{x = \frac{{3\pi }}{2}}\end{array}} \right.\]

Thay \[\cos x = 0\] vào (1): \[{4.0^2} + 4.0 - \left( {m + 3} \right) = 0 \Leftrightarrow m = - 3\]

+) Với \[m = - 3\]:

Phương trình \[(1) \Leftrightarrow 4{\cos ^2}x + 4\cos x = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{\cos x = 0}\\{\cos x = - 1}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = \frac{\pi }{2} + k\pi }\\{x = \pi + k2\pi }\end{array}} \right.{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} ,k \in \mathbb{Z}\]

\[x \in \left( { - \frac{\pi }{2};2\pi } \right] \Rightarrow x \in \left\{ {\frac{\pi }{2};\frac{{3\pi }}{2};\pi } \right\}\]

Phương trình \[(*)\] có đúng 3 nghiệm thuộc \[\left( { - \frac{\pi }{2};2\pi } \right]\]\[\left\{ {\frac{\pi }{2};\frac{{3\pi }}{2};\pi } \right\} \Rightarrow m = - 3\] không thỏa mãn

+) Với \[m \ne - 3\]: Phương trình (1) không có nghiệm \[x = \frac{\pi }{2},{\mkern 1mu} {\mkern 1mu} x = \frac{{3\pi }}{2}\]. Khi đó, để (*) có đúng 5 nghiệm thuộc \[\left( { - \frac{\pi }{2};2\pi } \right]\] thì phương trình (1) có đúng 3 nghiệm thuộc \[\left( { - \frac{\pi }{2};2\pi } \right]\]

Đặt \[\cos x = t\], (1) trở thành: \[4{t^2} + 4t - \left( {m + 3} \right) = 0\] (3)

Phương trình (1) có đúng 3 nghiệm thuộc \[\left( { - \frac{\pi }{2};2\pi } \right]\] Phương trình (3) có 2 nghiệm \[{t_1},{\mkern 1mu} {\mkern 1mu} {t_2}{\mkern 1mu} {\mkern 1mu} \left( {{t_1} \le {t_2}} \right)\] thỏa mãn:

 Media VietJack

hoặc \[\left\{ {\begin{array}{*{20}{l}}{{t_1} = - 1}\\{{t_2} \in \left( { - 1;0} \right] \cup \left\{ 1 \right\}}\end{array}} \right.\], hoặc \[{t_1} = {t_2} \in \left( {0;1} \right)\], hoặc \[\left\{ {\begin{array}{*{20}{l}}{{t_1} \in \left( {0;1} \right)}\\{{t_2} > 1}\end{array}} \right.\], hoặc \[\left\{ {\begin{array}{*{20}{l}}{{t_1} < - 1}\\{{t_2} \in \left( {0;1} \right)}\end{array}} \right.\]

TH1: \[\left\{ {\begin{array}{*{20}{l}}{{t_1} = - 1}\\{{t_2} \in \left( { - 1;0} \right] \cup \left\{ 1 \right\}}\end{array}} \right.\]

\[ \Rightarrow 4.{\left( { - 1} \right)^2} + 4.\left( { - 1} \right) - \left( {m + 3} \right) = 0 \Leftrightarrow m = - 3\] (loại)

TH2: \[{t_1} = {t_2} \in \left( {0;1} \right)\]

\[ \Rightarrow \Delta ' = 0 \Leftrightarrow 4 + 4\left( {m + 3} \right) \Leftrightarrow 4m + 16 = 0 \Leftrightarrow m = - 4\]

Khi đó, (3) có 2 nghiệm \[{t_1} = {t_2} = - \frac{1}{2} \notin \left( {0;1} \right){\mkern 1mu} {\mkern 1mu} \Rightarrow m = - 4\]: không thỏa mãn

TH3:

\[\left\{ {\begin{array}{*{20}{l}}{{t_1} \in \left( {0;1} \right)}\\{{t_2} > 1}\end{array}} \right. \Leftrightarrow 0 < {t_1} < 1 < {t_2} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{\Delta ' > 0}\\{{t_1}{t_2} > 0}\\{{t_1} + {t_2} > 0}\\{\left( {{t_1} - 1} \right)\left( {{t_2} - 1} \right) < 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{\Delta ' > 0}\\{{t_1}{t_2} > 0}\\{{t_1} + {t_2} > 0}\\{{t_1}{t_2} - \left( {{t_1} + {t_2}} \right) + 1 < 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{4m + 16 > 0}\\{ - \frac{{m + 3}}{4} > 0}\\{ - \frac{4}{4} > 0}\\{1 - \left( { - \frac{4}{4}} \right) - \frac{{m + 3}}{4} < 0}\end{array}} \right. \Leftrightarrow m \in \emptyset \]

TH4:

\[\left\{ {\begin{array}{*{20}{l}}{{t_1} < - 1}\\{{t_2} \in \left( {0;1} \right)}\end{array}} \right. \Leftrightarrow {t_1} < - 1 < 0 < {t_2} < 1 \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{\Delta ' > 0}\\{{t_1}{t_2} < 0}\\{\left( {{t_1} + 1} \right)\left( {{t_2} + 1} \right) < 0}\\{\left( {{t_1} - 1} \right) + \left( {{t_2} - 1} \right) < 0}\\{\left( {{t_1} - 1} \right)\left( {{t_2} - 1} \right) > 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{4m + 16 > 0}\\{ - \frac{{m + 3}}{4} < 0}\\{ - \frac{{m + 3}}{4} + \left( { - \frac{4}{4}} \right) + 1 < 0}\\{ - \frac{4}{4} - 2 < 0}\\{ - \frac{{m + 3}}{4} - \left( { - \frac{4}{4}} \right) + 1 > 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{m > - 4}\\{m > - 3}\\{m < 5}\end{array}} \right. \Leftrightarrow m \in \left( { - 3;5} \right)\]

Vậy, tập các giá trị thực của m thỏa mãn yêu cầu đề bài là: \[S = \left( { - 3;5} \right)\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình bình hành tâm O. Gọi M, N, E lần lượt là trung điểm của AB, BC, SO.

 a) Xác định thiết diện của hình chóp \[S.ABCD\] cắt bởi mặt phẳng \[\left( {MNE} \right)\].

 b) Mặt phẳng \[\left( {MNE} \right)\] cắt SD tại K, tính tỉ số \[\frac{{KS}}{{KD}}\].

Xem đáp án » 13/07/2024 4,668

Câu 2:

Phương trình \[{\sin ^2}x = 1\] tương đương với phương trình nào sau đây?

Xem đáp án » 05/02/2023 2,338

Câu 3:

Trên khoảng \[\left( { - \frac{{3\pi }}{4};\frac{\pi }{4}} \right)\] tập giá trị của hàm số \[y = \cos x\] là:

Xem đáp án » 05/02/2023 1,459

Câu 4:

Cho hình chóp S.ABCD có đáy ABCD là hình thang với các cạnh đáy AB, CD. Gọi I, J lần lượt là trung điểm của AD, BC và G là trọng tâm tam giác SAB. Điều kiện nào của AB và CD để thiết diện của hình chóp khi cắt bởi mặt phẳng (IJG) là hình bình hành?

Xem đáp án » 05/02/2023 1,405

Câu 5:

Cho mặt phẳng \[\left( \alpha \right)\] và đường thẳng \[d\not \subset \left( \alpha \right)\]. Khẳng định nào sau đây SAI?

Xem đáp án » 05/02/2023 1,141

Câu 6:

Rút ngẫu nhiên 8 quân bài từ 1 bộ tú lơ khơ 52 quân. Xác suất lấy được 5 quân màu đỏ là:

Xem đáp án » 05/02/2023 927

Câu 7:

d. Cho 15 viên bi, trong đó có 4 viên bi màu đỏ, 5 viên bi màu vàng, 6 viên bi màu xanh. Chọn ngẫu nhiên 3 viên vi trong 15 viên bi nói trên. Tính xác suất để chọn được đúng 2 viên bi màu xanh.

Xem đáp án » 13/07/2024 820

Bình luận


Bình luận
Vietjack official store