Câu hỏi:
13/07/2024 350
c. Biết tổng của các hệ số trong khai triển \[{\left( {1 + {x^2}} \right)^n}\] bằng 512. Hãy tìm hệ số của số hạng chứa \[{x^{12}}\] trong khai triển đó.
Câu hỏi trong đề: Bộ 20 đề thi học kì 1 Toán 11 năm 2022 - 2023 có đáp án !!
Quảng cáo
Trả lời:
c.
Phương pháp giải:
Khai triển nhị thức newton: \[{(x + y)^n} = \sum\limits_{i = 0}^n {C_n^i{x^i}.{y^{n - i}}} \]
Giải chi tiết:
Ta có: \[{\left( {1 + {x^2}} \right)^n} = \sum\limits_{i = 0}^n {C_n^i{x^{2i}}} \]
Tổng các hệ số khai triển: \[\sum\limits_{i = 0}^n {C_n^i} = {\left( {1 + 1} \right)^n} = 512 \Rightarrow {2^n} = {2^9} \Leftrightarrow n = 9\]
Khi đó, \[{\left( {1 + {x^2}} \right)^n} = {\left( {1 + {x^2}} \right)^9} = \sum\limits_{i = 0}^9 {C_9^i{x^{2i}}} \]
Số hạng chứa \[{x^{12}}\] trong khai triển ứng với i thỏa mãn: \[2i = 12 \Leftrightarrow i = 6\]
Hệ số của số hạng chứa \[{x^{12}}\] trong khai triển: \[C_9^6 = 84\].
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Giải chi tiết:
a) Trong (ABCD), gọi \[I = MN \cap AD,\]\[J = MN \cap CD\], \[F = MN \cap BD\]
Trong (SBD), gọi \[K = EF \cap SD\]
Trong (SAD), gọi \[Q = IK \cap SA\]
Trong (SAD), gọi \[P = JK \cap SC\]
Khi đó, thiết diện của hình chóp \[S.ABCD\] cắt bởi mặt phẳng \[\left( {MNE} \right)\] là ngũ giác \[MNPKQ\]
b) MN là đường trung bình của \[\Delta ABC \Rightarrow MN//AC\]
\[ \Rightarrow MF{\rm{//}}AC \Rightarrow \] F là trung điểm của OB \[ \Rightarrow BF = \frac{1}{2}OB = \frac{1}{4}BD \Rightarrow BF = \frac{1}{3}FD\]
Xét \[\Delta SOB\] có: E, F lần lượt là trung điểm của SO, OB \[ \Rightarrow EF\] là đường trung bình của \[\Delta SOB\]
\[ \Rightarrow EF{\rm{//}}SB \Rightarrow FK{\rm{//}}SB \Rightarrow \frac{{KS}}{{KD}} = \frac{{BF}}{{DF}} = \frac{1}{3}\]
Vậy, \[\frac{{KS}}{{KD}} = \frac{1}{3}\]
Lời giải
Đáp án D
Phương pháp giải:
Sử dụng công thức nhân đôi: \[\cos 2x = 1 - 2{\sin ^2}x\]
Giải chi tiết:
Ta có: \[{\sin ^2}x = 1 \Leftrightarrow \cos 2x = 1 - 2{\sin ^2}x = 1 - 2.1 = - 1\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.