Câu hỏi:
13/07/2024 247Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
c.
Phương pháp giải:
Khai triển nhị thức newton: \[{(x + y)^n} = \sum\limits_{i = 0}^n {C_n^i{x^i}.{y^{n - i}}} \]
Giải chi tiết:
Ta có: \[{\left( {1 + {x^2}} \right)^n} = \sum\limits_{i = 0}^n {C_n^i{x^{2i}}} \]
Tổng các hệ số khai triển: \[\sum\limits_{i = 0}^n {C_n^i} = {\left( {1 + 1} \right)^n} = 512 \Rightarrow {2^n} = {2^9} \Leftrightarrow n = 9\]
Khi đó, \[{\left( {1 + {x^2}} \right)^n} = {\left( {1 + {x^2}} \right)^9} = \sum\limits_{i = 0}^9 {C_9^i{x^{2i}}} \]
Số hạng chứa \[{x^{12}}\] trong khai triển ứng với i thỏa mãn: \[2i = 12 \Leftrightarrow i = 6\]
Hệ số của số hạng chứa \[{x^{12}}\] trong khai triển: \[C_9^6 = 84\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình bình hành tâm O. Gọi M, N, E lần lượt là trung điểm của AB, BC, SO.
a) Xác định thiết diện của hình chóp \[S.ABCD\] cắt bởi mặt phẳng \[\left( {MNE} \right)\].
b) Mặt phẳng \[\left( {MNE} \right)\] cắt SD tại K, tính tỉ số \[\frac{{KS}}{{KD}}\].
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Câu 7:
về câu hỏi!