🔥 Đề thi HOT:

1325 người thi tuần này

Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)

26.8 K lượt thi 30 câu hỏi
682 người thi tuần này

10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)

3.7 K lượt thi 10 câu hỏi
521 người thi tuần này

Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)

12.8 K lượt thi 25 câu hỏi
444 người thi tuần này

15 câu Trắc nghiệm Khoảng cách có đáp án (Nhận biết)

4.2 K lượt thi 15 câu hỏi
333 người thi tuần này

10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)

1.5 K lượt thi 10 câu hỏi
315 người thi tuần này

23 câu Trắc nghiệm Xác suất của biến cố có đáp án (Phần 2)

6.7 K lượt thi 23 câu hỏi

Nội dung liên quan:

Danh sách câu hỏi:

Câu 1

Tìm dãy số là một cấp số nhân trong các dãy số dưới đây.

Lời giải

Đáp án B

Phương pháp

Cấp số nhân \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1}\) và công bội \(q\) thì \({u_n} = {u_1}.{q^{n - 1}};\,{u_n} = {u_{n - 1}}q\)

Cách giải:

Đáp án A: Ta nhận thấy \(2:1 = 2;\,\left( { - 4} \right):2 = - 2\) nên dãy số \(1,\,2,\, - 4,\,8\) không là một cấp số nhân

Đáp án B: Ta thấy \(2:\left( { - \sqrt 2 } \right) = - 2\sqrt 2 :2 = 4:\left( { - 2\sqrt 2 } \right) = - \sqrt 2 \) nên dãy số \( - \sqrt 2 ;\,2;\,2\sqrt 2 ;\,4\) là một cấp số nhân có \({u_1} = - \sqrt 2 \); công bội \(q = - \sqrt 2 \).

Đáp án C: Ta thấy \( - \sqrt 3 :3 \ne \left( { - 1} \right):\left( { - \sqrt 3 } \right)\) nên dãy số \(3;\,\sqrt 3 ;\,1;\,\frac{{\sqrt 3 }}{3}\)không là cấp số nhân

Đáp án D: Ta thấy \(5:10 = \frac{1}{2} \ne \frac{1}{5}\) nên dãy số 10, 5, 1, 1 không là cấp số nhân.

Lời giải

Đáp án D

Phương pháp

Sử dụng công thức khai triển nhị thức Newton \({\left( {a + b} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{a^{n - k}}{b^k}} \) và suy ra số số hạng của khai triển là \(n + 1\)

Cách giải:

Số số hạng của biểu thức \(P\left( x \right) = {\left( {2x + 1} \right)^{17}}\)\(17 + 1 = 18\) số hạng.

Câu 3

Tìm tập xác định \(D\) của hàm số \(y = \cot \frac{x}{2}\).

Lời giải

Đáp án D

Phương pháp

Hàm số \(y = \cot x\) có TXĐ \(D = \mathbb{R}\backslash \left\{ {k\pi ,\,k \in \mathbb{Z}} \right\}\).

Cách giải:

ĐK: \(\sin \frac{x}{2} \ne 0 \Leftrightarrow \frac{x}{2} \ne k\pi \Leftrightarrow x \ne k2\pi \left( {k \in \mathbb{Z}} \right)\)

Nên hàm số \(y = \cot \frac{x}{2}\) có TXĐ \(D = \mathbb{R}\backslash \left\{ {k2\pi ,\,k \in \mathbb{Z}} \right\}\).

Câu 4

Xét trên tập xác định của mỗi hàm số thì khẳng định nào sau đây là đúng?

Lời giải

Đáp án B

Phương pháp

Sử dụng lý thuyết về tính chẵn lẻ của các hàm số lượng giác.

Cách giải:

Đáp án A: Hàm số \(y = \tan x\) là hàm số lẻ nên A sai.

Đáp án B: Hàm số \(y = \sin 2x\) là hàm số lẻ nên B đúng.

Đáp án C: Hàm số \(y = \cot 2x\) là hàm số lẻ trên \(\mathbb{R}\backslash \left\{ {\frac{{k\pi }}{2},k \in \mathbb{Z}} \right\}\) nên C sai.

Đáp án D : Hàm số \(y = \cos x\) là hàm số chẵn trên \(\mathbb{R}\)nên D sai.

Câu 5

Cho dãy số \(\left( {{u_n}} \right)\) biết \({u_n} = {2^n}\). Mệnh đề nào sau đây là mệnh đề đúng?

Lời giải

Đáp án D

Phương pháp

Vận dụng đúng công thức \({u_n} = {2^n}\) để suy ra câu đúng.

Cách giải:

Ta có \({u_n} = {2^n}\) nên \({u_{n + 2}} = {2^{n + 2}} = {2^n}{.2^2} = {4.2^n}\)

Câu 6

Mệnh đề nào sau đây đúng?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 9

Trong không gian cho các đường thẳng \(a,\,b\) và các mặt phẳng \(\left( \alpha \right),\,\left( \beta \right)\). Trong các khẳng định sau đây, đâu là khẳng định đúng?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 10

Cho hàm số \(f\left( x \right) = \sin 3x\). Mệnh đề nào dưới đây sai?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 12

Trong không gian, đường thẳng \(a\) song song với mặt phẳng \(\left( P \right)\) nếu

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 13

Trong hệ tọa độ \(Oxy\), phép quay tâm O, góc quay \( - 90^\circ \) biến điểm \(A\left( {2;0} \right)\) thành điểm

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 15

Họ nghiệm của phương trình \(\sqrt 3 \sin x + \cos x = 0\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 16

Tìm cung lượng giác \(x\) biết rằng ba tỉ số \(1,\,2\sin x,\,\sin x + 2\) theo thứ tự lập thành một cấp số cộng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 19

Tìm tất cả các giá trị của số thực \(m\) để phương trình \(\sin 7x = cos2m\) có nghiệm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 23

Tìm tập nghiệm của phương trình \(2{\sin ^2}x + 3\sin x\cos x + 5{\cos ^2}x = 2\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 26

Trong không gian, điều kiện nào sau đây không đủ để kết luận rằng mặt phẳng \(\left( P \right)\) song song với mặt phẳng \(\left( Q \right)\)? (giả thiết rằng các mặt phẳng đều phân biệt).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 29

Cho tam giác ABC có trọng tâm G. Gọi M, N, P lần lượt là trung điểm các cạnh BC, CA, AB. Phép vị tự nào sau đây biến tam giác ABC thành tam giác MNP?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 39

Cho chóp tứ giác \(S.ABCD\) có đáy là hình bình hành (tham khảo hình vẽ). Gọi I, J, K lần lượt là trung điểm các cạnh SA, SB, SC. Mệnh đề nào sau đây là mệnh đề sai?
Media VietJack

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

4.6

1855 Đánh giá

50%

40%

0%

0%

0%