Câu hỏi:
02/02/2023 250Cho hình chóp \(S.ABCD\) có đáy là hình bình hành (tham khảo hình vẽ). Một mặt phẳng đồng thời song song với AC và SB lần lượt cắt các đoạn thẳng SA, AB, BC, SC, SD, BD tương ứng tại M, N, E, F, I, J. Có bao nhiêu khẳng định sai trong các khẳng định sau?
I) \(IJ//SB\)
II) \(MF//AC\)
III) Tứ giác \(MNEF\) là hình bình hành.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án C
Phương pháp
Dựng hình và nhận xét.
Cách giải:
Lấy \(M\) bất kì thuộc \(SA\).
Trong \(\left( {SAB} \right)\), kẻ \(MN//SB\) \(\left( {N \in AB} \right)\).
Trong \(\left( {ABCD} \right)\), kẻ \(NE//AC\) \(\left( {E \in BC} \right)\).
Trong \(\left( {SBC} \right)\), kẻ \(EF//SB\) \(\left( {F \in SC} \right)\).
Trong \(\left( {ABCD} \right)\), gọi \(NE \cap BD = J\).
Trong \(\left( {SBD} \right)\), kẻ \(JI//SB\) \(\left( {I \in SD} \right)\).
Từ đó ta được mặt phẳng \(\left( {MNEFI} \right)\) thỏa mãn bài toán và các điểm M, N, E, F, J, I.
Dễ thấy, \(SB//JI\) nên (I) đúng.
\(MF//AC\) nên (II) đúng.
Tứ giác \(MNEF\) có \[NE//MF\] (cùng \(//AC\)) và \(FE//MN\) (cùng song song \(SB\) ) nên tứ giác \(MNEF\) là hình bình hành.
Vậy cả ba khẳng định đều đúng.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Câu 7:
về câu hỏi!