Câu hỏi:
02/02/2023 389
Cho hình chóp \(S.ABCD\) có đáy là hình bình hành (tham khảo hình vẽ). Một mặt phẳng đồng thời song song với AC và SB lần lượt cắt các đoạn thẳng SA, AB, BC, SC, SD, BD tương ứng tại M, N, E, F, I, J. Có bao nhiêu khẳng định sai trong các khẳng định sau?
I) \(IJ//SB\)
II) \(MF//AC\)
III) Tứ giác \(MNEF\) là hình bình hành.

Cho hình chóp \(S.ABCD\) có đáy là hình bình hành (tham khảo hình vẽ). Một mặt phẳng đồng thời song song với AC và SB lần lượt cắt các đoạn thẳng SA, AB, BC, SC, SD, BD tương ứng tại M, N, E, F, I, J. Có bao nhiêu khẳng định sai trong các khẳng định sau?
I) \(IJ//SB\)
II) \(MF//AC\)
III) Tứ giác \(MNEF\) là hình bình hành.
Câu hỏi trong đề: Bộ 20 đề thi học kì 1 Toán 11 năm 2022 - 2023 có đáp án !!
Quảng cáo
Trả lời:
Đáp án C
Phương pháp
Dựng hình và nhận xét.
Cách giải:
Lấy \(M\) bất kì thuộc \(SA\).
Trong \(\left( {SAB} \right)\), kẻ \(MN//SB\) \(\left( {N \in AB} \right)\).
Trong \(\left( {ABCD} \right)\), kẻ \(NE//AC\) \(\left( {E \in BC} \right)\).
Trong \(\left( {SBC} \right)\), kẻ \(EF//SB\) \(\left( {F \in SC} \right)\).
Trong \(\left( {ABCD} \right)\), gọi \(NE \cap BD = J\).
Trong \(\left( {SBD} \right)\), kẻ \(JI//SB\) \(\left( {I \in SD} \right)\).
Từ đó ta được mặt phẳng \(\left( {MNEFI} \right)\) thỏa mãn bài toán và các điểm M, N, E, F, J, I.
Dễ thấy, \(SB//JI\) nên (I) đúng.
\(MF//AC\) nên (II) đúng.
Tứ giác \(MNEF\) có \[NE//MF\] (cùng \(//AC\)) và \(FE//MN\) (cùng song song \(SB\) ) nên tứ giác \(MNEF\) là hình bình hành.
Vậy cả ba khẳng định đều đúng.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án D
Phương pháp
Vận dụng đúng công thức \({u_n} = {2^n}\) để suy ra câu đúng.
Cách giải:
Ta có \({u_n} = {2^n}\) nên \({u_{n + 2}} = {2^{n + 2}} = {2^n}{.2^2} = {4.2^n}\)
Lời giải
Đáp án A
Phương pháp:
+ Tính xác suất để người chơi thua 1 lần
+ Tính xác suất \({P_1}\) để người chơi thua 3 lần
+ Tính xác suất để người chơi có ít nhất 1 lần thắng: \(P = 1 - {P_1}\)
Cách giải:
+ Không gian mẫu: \(n\left( \Omega \right) = 6.6.6 = 216\)
+ Để người chơi thua thì
- Chỉ có 1 con súc sắc có mặt hơn 4 chấm: \(C_3^1.2.C_4^1C_4^1\)
- Cả ba con súc sắc đều có mặt không lớn hơn 4 chấm: \(C_4^1C_4^1C_4^1\)
Xác suất để người đó chơi thua 1 lần là \({P_1} = \frac{{C_3^1.2.4.4 + C_4^1C_4^1C_4^1}}{{216}} = \frac{{20}}{{27}}\)
Xác suất để người đó chơi thua 3 cả lần chơi là \({\left( {{P_1}} \right)^3} = {\left( {\frac{{20}}{{27}}} \right)^3}\)
Xác suất để người đó thắng ít nhất 1 lần trong 3 lần chơi là \(P = 1 - {\left( {\frac{{20}}{{27}}} \right)^3} = \frac{{11683}}{{19683}}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.