Câu hỏi:

02/02/2023 3,476 Lưu

Cho hình chóp \(S.ABCD\). Gọi G, E lần lượt là trọng tâm các tam giác SAD và SCD. Lấy M, N lần lượt là trung điểm AB, BC. Khẳng định nào sau đây đúng?
Media VietJack

A. \(GE\) cắt \(BC\)
B. \(GE\)\(MN\) chéo nhau
C. \(DE//MN\)
D. \(MN//SD\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án C

Phương pháp:

Dựng hình, nhận xét tính đúng sai của từng đáp án.

Cách giải:

Gọi \(P\) là trung điểm của \(SD\) thì \(AG = \frac{2}{3}AP,\,CE = \frac{2}{3}CP \Rightarrow GE//AC\)

\(MN\) là đường trung bình của tam giác \(ABC\) nên \(MN//AC\).

Vậy \(GE//MN\) (cùng \(//AC\)).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \({u_{n + 2}} = {2^2}\)
B. \({u_{n + 2}} = {2.2^n}\)
C. \({u_{n + 2}} = {2^n} + 2\)
D. \({u_{n + 2}} = {4.2^n}\)

Lời giải

Đáp án D

Phương pháp

Vận dụng đúng công thức \({u_n} = {2^n}\) để suy ra câu đúng.

Cách giải:

Ta có \({u_n} = {2^n}\) nên \({u_{n + 2}} = {2^{n + 2}} = {2^n}{.2^2} = {4.2^n}\)

Lời giải

Đáp án A

Phương pháp:

+ Tính xác suất để người chơi thua 1 lần

+ Tính xác suất \({P_1}\) để người chơi thua 3 lần

+ Tính xác suất để người chơi có ít nhất 1 lần thắng: \(P = 1 - {P_1}\)

Cách giải:

+ Không gian mẫu: \(n\left( \Omega \right) = 6.6.6 = 216\)  

+ Để người chơi thua thì

- Chỉ có 1 con súc sắc có mặt hơn 4 chấm: \(C_3^1.2.C_4^1C_4^1\)

- Cả ba con súc sắc đều có mặt không lớn hơn 4 chấm: \(C_4^1C_4^1C_4^1\)

Xác suất để người đó chơi thua 1 lần là \({P_1} = \frac{{C_3^1.2.4.4 + C_4^1C_4^1C_4^1}}{{216}} = \frac{{20}}{{27}}\)

Xác suất để người đó chơi thua 3 cả lần chơi là \({\left( {{P_1}} \right)^3} = {\left( {\frac{{20}}{{27}}} \right)^3}\)

Xác suất để người đó thắng ít nhất 1 lần trong 3 lần chơi là \(P = 1 - {\left( {\frac{{20}}{{27}}} \right)^3} = \frac{{11683}}{{19683}}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Nếu \(a \cap \left( \alpha \right) = \emptyset \) thì \(a//\left( \alpha \right)\)
B. Nếu \(a//b\)\(b//\left( \alpha \right)\) thì \(a//\left( \alpha \right)\)
C. Nếu \(a//b\)\(b \subset \left( \alpha \right)\) thì \(a//\left( \alpha \right)\)
D. Nếu \(a//\left( \beta \right)\)\(\left( \beta \right)//b\) thì \(a//b\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP