Câu hỏi:
02/02/2023 2,401Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án D
Phương pháp
Cấp số nhân \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1}\) và công bội \(q\) thì số hạng thứ n là \({u_n} = {u_1}.{q^{n - 1}}\)
Tổng n số hạng đầu của dãy \({S_n} = \frac{{{u_1}\left( {{q^n} - 1} \right)}}{{q - 1}}\)
Cách giải:
Gọi cấp số nhân \(\left( {{u_n}} \right)\), \({u_n} > 0;\,\forall n\) có số hạng đầu \({u_1}\) và công bội \(q \ne 1\) thì theo đề bài ta có
\(\left\{ \begin{array}{l}{u_5} - {u_4} = 576\\{u_2} - {u_1} = 9\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}{q^4} - {u_1}{q^3} = 576\\{u_1}q - {u_1} = 9\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}{q^3}\left( {q - 1} \right) = 576\\{u_1}\left( {q - 1} \right) = 9\end{array} \right.\)
Vì \(q \ne 1\) nên ta có \(\frac{{{u_1}{q^3}\left( {q - 1} \right)}}{{{u_1}\left( {q - 1} \right)}} = \frac{{576}}{9} \Leftrightarrow {q^3} = 64 \Leftrightarrow q = 4\left( {tm} \right)\)
Suy ra \({u_1} = 3\)
Do đó \({S_3} = \frac{{{u_1}\left( {{q^3} - 1} \right)}}{{\left( {q - 1} \right)}} = \frac{{3\left( {{4^3} - 1} \right)}}{{4 - 1}} = 63\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Cho lăng trụ \(ABCD.A'B'C'D'\) có hai đáy là các hình bình hành. Các điểm M, N, P lần lượt là trung điểm của cạnh AD, BC, CC' (tham khảo hình vẽ). Xét các khẳng định sau:
I) Mặt phẳng \(\left( {MNP} \right)\) cắt cạnh \(A'D'\)
II) Mặt phẳng \(\left( {MNP} \right)\) cắt cạnh \(DD'\) tại trung điểm của \(DD'\)
III) Mặt phẳng \(\left( {MNP} \right)\) song song với mặt phẳng \(\left( {ABC'D'} \right)\)
Trong các khẳng định trên, số khẳng định đúng là
về câu hỏi!