Câu hỏi:

02/02/2023 4,139

Trong không gian cho các đường thẳng \(a,\,b\) và các mặt phẳng \(\left( \alpha \right),\,\left( \beta \right)\). Trong các khẳng định sau đây, đâu là khẳng định đúng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Phương pháp

Sử dụng kiến thức về đường thẳng cắt mặt phẳng, đường thẳng song song với mặt phẳng

Cách giải:

A. Nếu đường thẳng a không có điểm chung với mặt phẳng \(\left( \alpha \right)\) thì \(a//\left( \alpha \right)\) nên A đúng.

B. Sai vì đường thẳng a có thể nằm trong \(\left( \alpha \right)\)

C. Sai vì đường thẳng a có thể nằm trong \(\left( \alpha \right)\)

D. Sai vì a, b có thể cắt nhau.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án D

Phương pháp

Vận dụng đúng công thức \({u_n} = {2^n}\) để suy ra câu đúng.

Cách giải:

Ta có \({u_n} = {2^n}\) nên \({u_{n + 2}} = {2^{n + 2}} = {2^n}{.2^2} = {4.2^n}\)

Lời giải

Đáp án A

Phương pháp:

+ Tính xác suất để người chơi thua 1 lần

+ Tính xác suất \({P_1}\) để người chơi thua 3 lần

+ Tính xác suất để người chơi có ít nhất 1 lần thắng: \(P = 1 - {P_1}\)

Cách giải:

+ Không gian mẫu: \(n\left( \Omega \right) = 6.6.6 = 216\)  

+ Để người chơi thua thì

- Chỉ có 1 con súc sắc có mặt hơn 4 chấm: \(C_3^1.2.C_4^1C_4^1\)

- Cả ba con súc sắc đều có mặt không lớn hơn 4 chấm: \(C_4^1C_4^1C_4^1\)

Xác suất để người đó chơi thua 1 lần là \({P_1} = \frac{{C_3^1.2.4.4 + C_4^1C_4^1C_4^1}}{{216}} = \frac{{20}}{{27}}\)

Xác suất để người đó chơi thua 3 cả lần chơi là \({\left( {{P_1}} \right)^3} = {\left( {\frac{{20}}{{27}}} \right)^3}\)

Xác suất để người đó thắng ít nhất 1 lần trong 3 lần chơi là \(P = 1 - {\left( {\frac{{20}}{{27}}} \right)^3} = \frac{{11683}}{{19683}}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP