Câu hỏi:
02/02/2023 344Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án B
Phương pháp:
- Tính số phần tử của không gian mẫu (số cách chọn 6 trong 19 quả cầu).
- Liệt kê và đếm số cách lấy mà số quả cầu xanh bằng số quả cầu đỏ.
- Tính xác suất theo công thức \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}}\)
Cách giải:
Số cách chọn 6 trong 19 quả cầu là \(n\left( \Omega \right) = C_{19}^6\)
Gọi A là biến cố: Lấy được 6 quả cầu đủ ba loại sao cho số quả cầu xanh bằng số quả cầu đỏ. Ta đếm số cách chọn 6 quả cầu đủ ba loại sao cho số quả cầu xanh bằng số quả cầu đỏ.
+ TH1: 1 quả xanh, 1 quả đỏ và 4 quả vàng có \(C_9^1.C_3^1.C_7^4\) cách chọn.
+ TH2: 2 quả xanh, 2 quả đỏ và 2 quả vàng có \(C_9^2.C_3^2.C_7^2\) cách chọn.
Suy ra \(n\left( A \right) = C_9^1.C_3^1.C_7^4 + C_9^2.C_3^2.C_7^2\)
Vậy xác suất là \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{C_9^1.C_3^1.C_7^4 + C_9^2.C_3^2.C_7^2}}{{C_{19}^6}} = \frac{9}{{76}}\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Cho lăng trụ \(ABCD.A'B'C'D'\) có hai đáy là các hình bình hành. Các điểm M, N, P lần lượt là trung điểm của cạnh AD, BC, CC' (tham khảo hình vẽ). Xét các khẳng định sau:
I) Mặt phẳng \(\left( {MNP} \right)\) cắt cạnh \(A'D'\)
II) Mặt phẳng \(\left( {MNP} \right)\) cắt cạnh \(DD'\) tại trung điểm của \(DD'\)
III) Mặt phẳng \(\left( {MNP} \right)\) song song với mặt phẳng \(\left( {ABC'D'} \right)\)
Trong các khẳng định trên, số khẳng định đúng là
Câu 7:
về câu hỏi!