Cho hình chóp \(S.ABCD\) có đáy là hình bình hành, M là điểm bất kì năm trong đoạn thẳng \(SC\). Mặt phẳng \(\left( \alpha \right)\) đi qua \(M\) và song song với mặt phẳng \(\left( {SAB} \right)\). Thiết diện của hình chóp \(S.ABCD\)cắt bởi mặt phẳng \(\left( \alpha \right)\) là hình gì?
Quảng cáo
Trả lời:
Đáp án B
Phương pháp:
Dựng các đường thẳng qua \(M\) và song song với các cạnh của tam giác \(SAB\) ta được mặt phẳng \(\left( \alpha \right)\) cần dựng
Từ đó ta xác định thiết diện của hình chóp cắt bởi mặt phẳng \(\left( \alpha \right)\)
Cách giải:
+ Trong mặt phẳng \(\left( {SBC} \right)\) kẻ \(MF//SB\) \(\left( {F \in BC} \right)\)
+ Trong mặt phẳng \(\left( {ABCD} \right)\) kẻ \(FN//BA\) \(\left( {N \in AD} \right)\)
Từ đó ta có \(\left( {MNF} \right)//\left( {SAB} \right)\)
Trong \(\left( {SCD} \right)\) kẻ \(ME//CD\) \(\left( {E \in SD} \right) \Rightarrow ME//CD//FN//AB\) hay \(\left( {MNF} \right) \equiv \left( {MFNE} \right)\)
Suy ra \(\left( \alpha \right) \equiv \left( {MFNE} \right)\)
Ta có \(\left\{ \begin{array}{l}\left( \alpha \right) \cap \left( {SBC} \right) = MF\\\left( \alpha \right) \cap \left( {SDC} \right) = ME\\\left( \alpha \right) \cap \left( {SAD} \right) = NE\\\left( \alpha \right) \cap \left( {ABCD} \right) = NF\end{array} \right.\) nên thiết diện cắt bởi \(\left( \alpha \right)\)là tứ giác \(MENF\)
Mà \(ME//FN \Rightarrow MENF\) là hình thang.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án D
Phương pháp
Vận dụng đúng công thức \({u_n} = {2^n}\) để suy ra câu đúng.
Cách giải:
Ta có \({u_n} = {2^n}\) nên \({u_{n + 2}} = {2^{n + 2}} = {2^n}{.2^2} = {4.2^n}\)
Lời giải
Đáp án A
Phương pháp:
+ Tính xác suất để người chơi thua 1 lần
+ Tính xác suất \({P_1}\) để người chơi thua 3 lần
+ Tính xác suất để người chơi có ít nhất 1 lần thắng: \(P = 1 - {P_1}\)
Cách giải:
+ Không gian mẫu: \(n\left( \Omega \right) = 6.6.6 = 216\)
+ Để người chơi thua thì
- Chỉ có 1 con súc sắc có mặt hơn 4 chấm: \(C_3^1.2.C_4^1C_4^1\)
- Cả ba con súc sắc đều có mặt không lớn hơn 4 chấm: \(C_4^1C_4^1C_4^1\)
Xác suất để người đó chơi thua 1 lần là \({P_1} = \frac{{C_3^1.2.4.4 + C_4^1C_4^1C_4^1}}{{216}} = \frac{{20}}{{27}}\)
Xác suất để người đó chơi thua 3 cả lần chơi là \({\left( {{P_1}} \right)^3} = {\left( {\frac{{20}}{{27}}} \right)^3}\)
Xác suất để người đó thắng ít nhất 1 lần trong 3 lần chơi là \(P = 1 - {\left( {\frac{{20}}{{27}}} \right)^3} = \frac{{11683}}{{19683}}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.