Câu hỏi:

02/02/2023 466

Trong các mệnh đề sau, có bao nhiêu mệnh đề đúng?

I) Hàm số \(y = x + {\mathop{\rm sinx}\nolimits} \) tuần hoàn với chu kì \(T = 2\pi \)

II) Hàm số \(y = x\cos x\) là hàm số lẻ

III) Hàm số \(y = \tan x\) đồng biến trên từng khoảng xác định

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Phương pháp:

Hàm số \(y = f\left( x \right)\) tuần hoàn với chu kì \(T \Leftrightarrow \left\{ \begin{array}{l}x \in D \Rightarrow x + T \in D\\f\left( x \right) = f\left( {x + T} \right)\end{array} \right.\)

Hàm số \(y = f\left( x \right)\) là hàm số lẻ \( \Leftrightarrow \left\{ \begin{array}{l}x \in D \Rightarrow - x \in D\\f\left( { - x} \right) = - f\left( x \right)\end{array} \right.\)

Cách giải:

A. Sai vì \(f\left( {x + 2\pi } \right) = x + 2\pi + \sin \left( {x + 2\pi } \right) = x + \sin x + 2\pi \ne f\left( x \right)\)

B. Đúng vì \(\left\{ \begin{array}{l}x \in \mathbb{R} \Rightarrow - x \in \mathbb{R}\\f\left( { - x} \right) = - x.cos\left( { - x} \right) = - x\cos x = - f\left( x \right)\end{array} \right.\)

C. Đúng vì hàm số \(y = \tan x\) đồng biến trên mỗi khoảng \(\left( { - \frac{\pi }{2} + k\pi ;\,\frac{\pi }{2} + k\pi } \right)\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án D

Phương pháp

Vận dụng đúng công thức \({u_n} = {2^n}\) để suy ra câu đúng.

Cách giải:

Ta có \({u_n} = {2^n}\) nên \({u_{n + 2}} = {2^{n + 2}} = {2^n}{.2^2} = {4.2^n}\)

Lời giải

Đáp án A

Phương pháp:

+ Tính xác suất để người chơi thua 1 lần

+ Tính xác suất \({P_1}\) để người chơi thua 3 lần

+ Tính xác suất để người chơi có ít nhất 1 lần thắng: \(P = 1 - {P_1}\)

Cách giải:

+ Không gian mẫu: \(n\left( \Omega \right) = 6.6.6 = 216\)  

+ Để người chơi thua thì

- Chỉ có 1 con súc sắc có mặt hơn 4 chấm: \(C_3^1.2.C_4^1C_4^1\)

- Cả ba con súc sắc đều có mặt không lớn hơn 4 chấm: \(C_4^1C_4^1C_4^1\)

Xác suất để người đó chơi thua 1 lần là \({P_1} = \frac{{C_3^1.2.4.4 + C_4^1C_4^1C_4^1}}{{216}} = \frac{{20}}{{27}}\)

Xác suất để người đó chơi thua 3 cả lần chơi là \({\left( {{P_1}} \right)^3} = {\left( {\frac{{20}}{{27}}} \right)^3}\)

Xác suất để người đó thắng ít nhất 1 lần trong 3 lần chơi là \(P = 1 - {\left( {\frac{{20}}{{27}}} \right)^3} = \frac{{11683}}{{19683}}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP