Câu hỏi:
02/02/2023 653Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án A
Phương pháp:
Cấp số cộng có số hạng đầu \({u_1}\) và công sai \(d\) thì có tổng \(n\)số hạng đầu là \({S_n} = \frac{{\left( {{u_1} + {u_n}} \right)n}}{2}\)
Cách giải:
Ta có số các số hạng của dãy là \(\frac{{3n + 1 - 1}}{3} + 1 = n + 1\) số
Nên \(1 + 4 + 7 + .. + \left( {3n + 1} \right) = 4187 \Leftrightarrow \frac{{\left( {1 + 3n + 1} \right)\left( {n + 1} \right)}}{2} = 4187 \Leftrightarrow \left( {3n + 2} \right)\left( {n + 1} \right) - 8374 = 0\)
\( \Leftrightarrow 3{n^2} + 5n - 8372 = 0 \Leftrightarrow \left[ \begin{array}{l}n = 52\left( {tm} \right)\\n = - \frac{{161}}{3}\left( {ktm} \right)\end{array} \right.\)
Vậy \(n = 52\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Cho lăng trụ \(ABCD.A'B'C'D'\) có hai đáy là các hình bình hành. Các điểm M, N, P lần lượt là trung điểm của cạnh AD, BC, CC' (tham khảo hình vẽ). Xét các khẳng định sau:
I) Mặt phẳng \(\left( {MNP} \right)\) cắt cạnh \(A'D'\)
II) Mặt phẳng \(\left( {MNP} \right)\) cắt cạnh \(DD'\) tại trung điểm của \(DD'\)
III) Mặt phẳng \(\left( {MNP} \right)\) song song với mặt phẳng \(\left( {ABC'D'} \right)\)
Trong các khẳng định trên, số khẳng định đúng là
Câu 7:
về câu hỏi!