Câu hỏi:

02/02/2023 216

Cho dãy số \(\left( {{u_n}} \right)\) thỏa mãn \({u_1} = 6\)\({u_{n + 1}} = \frac{1}{9}\left( {u_n^2 - {u_n} + 25} \right)\) với mọi số tự nhiên \(n \ge 1\). Có bao nhiêu mệnh đề đúng trong các mệnh đề sau?

I) \(\left( {{u_n}} \right)\) là dãy số không tăng, không giảm.

II) \(\frac{1}{{{u_1} + 4}} = \frac{1}{{{u_1} - 5}} - \frac{1}{{{u_2} - 5}}\)

III) \(\frac{1}{{{u_1} + 4}} + \frac{1}{{{u_2} + 4}} + ... + \frac{1}{{{u_{2018}} + 4}} = 1 - \frac{1}{{{u_{2019}} - 5}}\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Phương pháp:

Xét tính đúng sai của từng mệnh đề bằng cách sử dụng định nghĩa dãy số tăng, giảm, tính các số hạng đầu của dãy, nhận xét quy luật,...

Cách giải:

Mệnh đề (I): Xét \({u_{n + 1}} - {u_n} = \frac{1}{9}\left( {u_n^2 - {u_n} + 25} \right) - {u_n} = \frac{{u_n^2 - 10{u_n} + 25}}{9} = \frac{{{{\left( {{u_n} - 5} \right)}^2}}}{9} \ge 0,\,\forall {u_n}\)

\( \Rightarrow {u_{n + 1}} \ge {u_n},\,\forall n\) hay \(\left( {{u_n}} \right)\) là dãy số tăng \( \Rightarrow \) (I) sai.

Mệnh đề (II): Ta có: \({u_1} = 6,\,{u_2} = \frac{{55}}{9}\)

\( \Rightarrow \frac{1}{{{u_1} + 4}} = \frac{1}{{6 + 4}} = \frac{1}{{10}}\)\(\frac{1}{{{u_1} - 5}} - \frac{1}{{{u_2} - 5}} = \frac{1}{{6 - 5}} - \frac{1}{{\frac{{55}}{9} - 5}} = \frac{1}{{10}}\)

\( \Rightarrow \frac{1}{{{u_1} + 4}} = \frac{1}{{{u_1} - 5}} - \frac{1}{{{u_2} - 5}}\) hay (II) đúng.

Mệnh đề (III): Ta có: \({u_{n + 1}} - 5 = \frac{1}{9}\left( {u_n^2 - {u_n} + 25} \right) - 5 = \frac{{u_n^2 - {u_n} - 20}}{9} = \frac{{\left( {{u_n} - 5} \right)\left( {{u_n} + 4} \right)}}{9}\)

\( \Rightarrow \frac{1}{{{u_{n + 1}} - 5}} = \frac{9}{{\left( {{u_n} - 5} \right)\left( {{u_n} + 4} \right)}} = \frac{1}{{{u_n} - 5}} - \frac{1}{{{u_n} + 4}} \Rightarrow \frac{1}{{{u_n} + 4}} = \frac{1}{{{u_n} - 5}} - \frac{1}{{{u_{n + 1}} - 5}}\)

\( \Rightarrow \frac{1}{{{u_1} + 4}} + \frac{1}{{{u_2} + 4}} + ... + \frac{1}{{{u_{2018}} + 4}} = \frac{1}{{{u_1} - 5}} - \frac{1}{{{u_2} - 5}} + \frac{1}{{{u_2} - 5}} - \frac{1}{{{u_3} - 5}} + ... + \frac{1}{{{u_{2018}} - 5}} - \frac{1}{{{u_{2019}} - 5}}\)

\( = \frac{1}{{{u_1} - 5}} - \frac{1}{{{u_{2019}} - 5}} = \frac{1}{{6 - 5}} - \frac{1}{{{u_{2019}} - 5}} = 1 - \frac{1}{{{u_{2019}} - 5}}\)

Nên (III) đúng.

Vậy (I) sai và (II), (III) đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án D

Phương pháp

Vận dụng đúng công thức \({u_n} = {2^n}\) để suy ra câu đúng.

Cách giải:

Ta có \({u_n} = {2^n}\) nên \({u_{n + 2}} = {2^{n + 2}} = {2^n}{.2^2} = {4.2^n}\)

Lời giải

Đáp án A

Phương pháp:

+ Tính xác suất để người chơi thua 1 lần

+ Tính xác suất \({P_1}\) để người chơi thua 3 lần

+ Tính xác suất để người chơi có ít nhất 1 lần thắng: \(P = 1 - {P_1}\)

Cách giải:

+ Không gian mẫu: \(n\left( \Omega \right) = 6.6.6 = 216\)  

+ Để người chơi thua thì

- Chỉ có 1 con súc sắc có mặt hơn 4 chấm: \(C_3^1.2.C_4^1C_4^1\)

- Cả ba con súc sắc đều có mặt không lớn hơn 4 chấm: \(C_4^1C_4^1C_4^1\)

Xác suất để người đó chơi thua 1 lần là \({P_1} = \frac{{C_3^1.2.4.4 + C_4^1C_4^1C_4^1}}{{216}} = \frac{{20}}{{27}}\)

Xác suất để người đó chơi thua 3 cả lần chơi là \({\left( {{P_1}} \right)^3} = {\left( {\frac{{20}}{{27}}} \right)^3}\)

Xác suất để người đó thắng ít nhất 1 lần trong 3 lần chơi là \(P = 1 - {\left( {\frac{{20}}{{27}}} \right)^3} = \frac{{11683}}{{19683}}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP