Câu hỏi:
02/02/2023 179Cho dãy số \(\left( {{u_n}} \right)\) thỏa mãn \({u_1} = 6\) và \({u_{n + 1}} = \frac{1}{9}\left( {u_n^2 - {u_n} + 25} \right)\) với mọi số tự nhiên \(n \ge 1\). Có bao nhiêu mệnh đề đúng trong các mệnh đề sau?
I) \(\left( {{u_n}} \right)\) là dãy số không tăng, không giảm.
II) \(\frac{1}{{{u_1} + 4}} = \frac{1}{{{u_1} - 5}} - \frac{1}{{{u_2} - 5}}\)
III) \(\frac{1}{{{u_1} + 4}} + \frac{1}{{{u_2} + 4}} + ... + \frac{1}{{{u_{2018}} + 4}} = 1 - \frac{1}{{{u_{2019}} - 5}}\)
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Đáp án B
Phương pháp:
Xét tính đúng sai của từng mệnh đề bằng cách sử dụng định nghĩa dãy số tăng, giảm, tính các số hạng đầu của dãy, nhận xét quy luật,...
Cách giải:
Mệnh đề (I): Xét \({u_{n + 1}} - {u_n} = \frac{1}{9}\left( {u_n^2 - {u_n} + 25} \right) - {u_n} = \frac{{u_n^2 - 10{u_n} + 25}}{9} = \frac{{{{\left( {{u_n} - 5} \right)}^2}}}{9} \ge 0,\,\forall {u_n}\)
\( \Rightarrow {u_{n + 1}} \ge {u_n},\,\forall n\) hay \(\left( {{u_n}} \right)\) là dãy số tăng \( \Rightarrow \) (I) sai.
Mệnh đề (II): Ta có: \({u_1} = 6,\,{u_2} = \frac{{55}}{9}\)
\( \Rightarrow \frac{1}{{{u_1} + 4}} = \frac{1}{{6 + 4}} = \frac{1}{{10}}\) và \(\frac{1}{{{u_1} - 5}} - \frac{1}{{{u_2} - 5}} = \frac{1}{{6 - 5}} - \frac{1}{{\frac{{55}}{9} - 5}} = \frac{1}{{10}}\)
\( \Rightarrow \frac{1}{{{u_1} + 4}} = \frac{1}{{{u_1} - 5}} - \frac{1}{{{u_2} - 5}}\) hay (II) đúng.
Mệnh đề (III): Ta có: \({u_{n + 1}} - 5 = \frac{1}{9}\left( {u_n^2 - {u_n} + 25} \right) - 5 = \frac{{u_n^2 - {u_n} - 20}}{9} = \frac{{\left( {{u_n} - 5} \right)\left( {{u_n} + 4} \right)}}{9}\)
\( \Rightarrow \frac{1}{{{u_{n + 1}} - 5}} = \frac{9}{{\left( {{u_n} - 5} \right)\left( {{u_n} + 4} \right)}} = \frac{1}{{{u_n} - 5}} - \frac{1}{{{u_n} + 4}} \Rightarrow \frac{1}{{{u_n} + 4}} = \frac{1}{{{u_n} - 5}} - \frac{1}{{{u_{n + 1}} - 5}}\)
\( \Rightarrow \frac{1}{{{u_1} + 4}} + \frac{1}{{{u_2} + 4}} + ... + \frac{1}{{{u_{2018}} + 4}} = \frac{1}{{{u_1} - 5}} - \frac{1}{{{u_2} - 5}} + \frac{1}{{{u_2} - 5}} - \frac{1}{{{u_3} - 5}} + ... + \frac{1}{{{u_{2018}} - 5}} - \frac{1}{{{u_{2019}} - 5}}\)
\( = \frac{1}{{{u_1} - 5}} - \frac{1}{{{u_{2019}} - 5}} = \frac{1}{{6 - 5}} - \frac{1}{{{u_{2019}} - 5}} = 1 - \frac{1}{{{u_{2019}} - 5}}\)
Nên (III) đúng.
Vậy (I) sai và (II), (III) đúng.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Cho lăng trụ \(ABCD.A'B'C'D'\) có hai đáy là các hình bình hành. Các điểm M, N, P lần lượt là trung điểm của cạnh AD, BC, CC' (tham khảo hình vẽ). Xét các khẳng định sau:
I) Mặt phẳng \(\left( {MNP} \right)\) cắt cạnh \(A'D'\)
II) Mặt phẳng \(\left( {MNP} \right)\) cắt cạnh \(DD'\) tại trung điểm của \(DD'\)
III) Mặt phẳng \(\left( {MNP} \right)\) song song với mặt phẳng \(\left( {ABC'D'} \right)\)
Trong các khẳng định trên, số khẳng định đúng là
Câu 5:
Câu 6:
Câu 7:
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
100 câu trắc nghiệm Đạo hàm cơ bản (P1)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận