Câu hỏi:

02/02/2023 1,645

Hệ số của số hạng thứ 12 trong khai triển nhị thức \({\left( {3 - x} \right)^{15}}\) theo lũy thừa tăng dần của \(x\)

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Phương pháp:

- Sử dụng công thức khai triển nhị thức Newton, khai triển nhị thức đã cho.

- Tìm hệ số của số hạng thứ 12 trong khai triển và kết luận.

Cách giải:

Ta có:

\({\left( {3 - x} \right)^{15}} = \sum\limits_{k = 0}^{15} {C_{15}^k{3^{15 - k}}{{\left( { - x} \right)}^k}} = \sum\limits_{k = 0}^{15} {C_{15}^k{3^{15 - k}}{{\left( { - 1} \right)}^k}{{\left( x \right)}^k}} \)

\( = C_{15}^0 - C_{15}^1{.3^{14}}x + C_{15}^2{.3^{13}}{x^2} - ... + C_{15}^{14}.3{x^{14}} - C_{15}^{15}{x^{15}}\)

Lũy thừa của \(x\) tăng dần ứng với \(k\) tăng dần nên số hạng thứ 12 là \(C_{15}^{11}{3^{15 - 11}}{\left( { - 1} \right)^{11}}{x^{11}}\).

Hệ số của số hạng trên là \(C_{15}^{11}{3^4}{\left( { - 1} \right)^{11}} = - {3^4}C_{15}^{11} = - 110565\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho dãy số \(\left( {{u_n}} \right)\) biết \({u_n} = {2^n}\). Mệnh đề nào sau đây là mệnh đề đúng?

Xem đáp án » 02/02/2023 8,174

Câu 2:

Cho dãy số \(\left( {{u_n}} \right)\)\({u_1} = 2,\,{u_2} = 3\)\({u_{n + 1}} = 2{u_n} + {u_{n - 1}}\) với mọi \(n \ge 2,\,n \in \mathbb{N}\). Tìm số hạng thứ tư của dãy số đó.

Xem đáp án » 02/02/2023 4,261

Câu 3:

Cho cấp số cộng \(\left( {{u_n}} \right)\) thỏa mãn \(\left\{ \begin{array}{l}{u_4} = 7{u_1}\\{S_5} = 75\end{array} \right.\). Tìm số hạng thứ hai của cấp số cộng này.

Xem đáp án » 02/02/2023 4,055

Câu 4:

Trong không gian cho các đường thẳng \(a,\,b\) và các mặt phẳng \(\left( \alpha \right),\,\left( \beta \right)\). Trong các khẳng định sau đây, đâu là khẳng định đúng?

Xem đáp án » 02/02/2023 3,840

Câu 5:

Trong một trò chơi, người chơi cần gieo cùng lúc ba con súc sắc cân đối, đồng chất; nếu được ít nhất hai con súc sắc xuất hiện mặt có số chấm lớn hơn 4 thì người chơi đó thắng. Tính xác suất để trong ba lần chơi, người chơi thắng ít nhất một lần.

Xem đáp án » 02/02/2023 3,283

Câu 6:

Cho lăng trụ \(ABCD.A'B'C'D'\) có hai đáy là các hình bình hành. Các điểm M, N, P lần lượt là trung điểm của cạnh AD, BC, CC' (tham khảo hình vẽ). Xét các khẳng định sau: 

I) Mặt phẳng \(\left( {MNP} \right)\) cắt cạnh \(A'D'\)

II) Mặt phẳng \(\left( {MNP} \right)\) cắt cạnh \(DD'\) tại trung điểm của \(DD'\)

III) Mặt phẳng \(\left( {MNP} \right)\) song song với mặt phẳng \(\left( {ABC'D'} \right)\)

Trong các khẳng định trên, số khẳng định đúng là

Xem đáp án » 02/02/2023 2,816

Câu 7:

Trong một cấp số nhân gồm các số hạng dương, hiệu của số hạng thứ năm và số hạng thứ tư là 576, hiệu của số hạng thứ hai và số hạng đầu tiên là 9. Tìm tổng \({S_3}\) của 3 số hạng đầu của cấp số nhân này.

Xem đáp án » 02/02/2023 2,402

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store