Câu hỏi:
02/02/2023 380Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án A
Phương pháp:
Cấp số nhân \(\left( {{u_n}} \right)\) với công bội \(q\)và số hạng đầu tiên \({u_1}\) có \({u_n} = {u_{n - 1}}.q\)
\(\left( {{u_n}} \right)\) là dãy số giảm khi \({u_{n + 1}} < {u_n}\), \(\forall n \in \mathbb{N}*\)
Cách giải:
Vì \({u_1} > 0\) nên \(\left( {{u_n}} \right)\) là dãy số giảm thì \(q > 0\) suy ra \({u_n} > 0,\,\forall n\)
Ta có \({u_{n + 1}} = {u_n}q \Leftrightarrow \frac{{{u_{n + 1}}}}{{{u_n}}} = q\) mà \(\left( {{u_n}} \right)\) là dãy số giảm nên \({u_{n + 1}} < {u_n}\), \(\forall n \in \mathbb{N}*\)
Suy ra \(\frac{{{u_{n + 1}}}}{{{u_n}}} < 1 \Rightarrow q < 1\)
Do đó \(0 < q < 1\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Câu 7:
về câu hỏi!