Câu hỏi:
02/02/2023 1,212
Một đội công nhân trồng cây xanh trên đoạn đường dài 5,27 kilomet. Cứ 50 mét trồng một cây. Hỏi có bao nhiêu cây được đội công nhân trồng trên đoạn đó (cây đầu tiên được trồng ở ngay đầu đoạn đường)?
Câu hỏi trong đề: Bộ 20 đề thi học kì 1 Toán 11 năm 2022 - 2023 có đáp án !!
Quảng cáo
Trả lời:
Đáp án C
Phương pháp
Sử dụng công thức tính số hạng thứ n của cấp số cộng \({u_n} = {u_1} + \left( {n - 1} \right)d\)
Cách giải:
Cứ hai cây cách nhau 50m và cây đầu tiên trồng ở đầu đường nên ta coi dãy các cây là một cấp số cộng \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1} = 0\), công sai \(d = 50\), cây cuối cùng trồng trên đường là số hạng \({u_n}\) của cấp số cộng.
Có \({u_n} = {u_1} + \left( {n - 1} \right)d \Rightarrow {u_n} = 0 + \left( {n - 1} \right).50 \Leftrightarrow {u_n} = 50\left( {n - 1} \right)\)
Do \(n \in \mathbb{N}*\) nên \({u_n} \vdots 50\). Lại có \({u_n} \le 5270\) nên \({u_n} = 5270\).
Do đó \(5250 = \left( {n - 1} \right).50 \Leftrightarrow n = 106\). Vậy trồng được tất cả 106 cây và dư ra 20m đường.
Chú ý:
Một số em chỉ lấy \(5270:50 = 105\) dư 20 và chọn ngay B là sai vì quên mất cây đầu tiên trồng ngay đầu đường nên phải cộng thêm 1.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án D
Phương pháp
Vận dụng đúng công thức \({u_n} = {2^n}\) để suy ra câu đúng.
Cách giải:
Ta có \({u_n} = {2^n}\) nên \({u_{n + 2}} = {2^{n + 2}} = {2^n}{.2^2} = {4.2^n}\)
Lời giải
Đáp án A
Phương pháp:
+ Tính xác suất để người chơi thua 1 lần
+ Tính xác suất \({P_1}\) để người chơi thua 3 lần
+ Tính xác suất để người chơi có ít nhất 1 lần thắng: \(P = 1 - {P_1}\)
Cách giải:
+ Không gian mẫu: \(n\left( \Omega \right) = 6.6.6 = 216\)
+ Để người chơi thua thì
- Chỉ có 1 con súc sắc có mặt hơn 4 chấm: \(C_3^1.2.C_4^1C_4^1\)
- Cả ba con súc sắc đều có mặt không lớn hơn 4 chấm: \(C_4^1C_4^1C_4^1\)
Xác suất để người đó chơi thua 1 lần là \({P_1} = \frac{{C_3^1.2.4.4 + C_4^1C_4^1C_4^1}}{{216}} = \frac{{20}}{{27}}\)
Xác suất để người đó chơi thua 3 cả lần chơi là \({\left( {{P_1}} \right)^3} = {\left( {\frac{{20}}{{27}}} \right)^3}\)
Xác suất để người đó thắng ít nhất 1 lần trong 3 lần chơi là \(P = 1 - {\left( {\frac{{20}}{{27}}} \right)^3} = \frac{{11683}}{{19683}}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.