Câu hỏi:
02/02/2023 2,085
Trong một hộp có 9 tấm thẻ được đánh số từ 1 đến 9. Lấy ngẫu nhiên ra bốn thẻ và xếp cạnh nhau theo thứ tự từ trái sang phải. Tính xác suất để bốn thẻ đó xếp thành một số tự nhiên chẵn.
Câu hỏi trong đề: Bộ 20 đề thi học kì 1 Toán 11 năm 2022 - 2023 có đáp án !!
Quảng cáo
Trả lời:
Đáp án B
Phương pháp:
- Tính số phần tử của không gian mẫu (số cách chọn 4 trong 9 thẻ và đem ra sắp xếp)
- Tìm số cách lấy ra bốn thẻ và xếp cạnh nhau theo thứ tự từ trái sang phải để được một số chẵn.
- Tính xác suất theo công thức \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}}\)
Cách giải:
+ Số phần tử của không gian mẫu \(n\left( \Omega \right) = A_9^4\)
+ Gọi A là biến cố: Lấy ra bốn thẻ và xếp cạnh nhau theo thứ tự từ trái sang phải để được một số chẵn
Gọi 4 thẻ được lấy ra, sắp xếp cạnh nhau là \(abcd\)và là một số chẵn.
+ \(d \in \left\{ {2;4;6;8} \right\}\) nên \(d\) có 4 cách chọn
+ a có 8 cách chọn, \(b\) có 7 cách chọn và \(c\) có 6 cách chọn
Nên \(n\left( A \right) = 8.7.6.4 = 1344\)
Xác suất cần tìm là \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{1344}}{{A_9^4}} = \frac{4}{9}\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án D
Phương pháp
Vận dụng đúng công thức \({u_n} = {2^n}\) để suy ra câu đúng.
Cách giải:
Ta có \({u_n} = {2^n}\) nên \({u_{n + 2}} = {2^{n + 2}} = {2^n}{.2^2} = {4.2^n}\)
Lời giải
Đáp án A
Phương pháp:
+ Tính xác suất để người chơi thua 1 lần
+ Tính xác suất \({P_1}\) để người chơi thua 3 lần
+ Tính xác suất để người chơi có ít nhất 1 lần thắng: \(P = 1 - {P_1}\)
Cách giải:
+ Không gian mẫu: \(n\left( \Omega \right) = 6.6.6 = 216\)
+ Để người chơi thua thì
- Chỉ có 1 con súc sắc có mặt hơn 4 chấm: \(C_3^1.2.C_4^1C_4^1\)
- Cả ba con súc sắc đều có mặt không lớn hơn 4 chấm: \(C_4^1C_4^1C_4^1\)
Xác suất để người đó chơi thua 1 lần là \({P_1} = \frac{{C_3^1.2.4.4 + C_4^1C_4^1C_4^1}}{{216}} = \frac{{20}}{{27}}\)
Xác suất để người đó chơi thua 3 cả lần chơi là \({\left( {{P_1}} \right)^3} = {\left( {\frac{{20}}{{27}}} \right)^3}\)
Xác suất để người đó thắng ít nhất 1 lần trong 3 lần chơi là \(P = 1 - {\left( {\frac{{20}}{{27}}} \right)^3} = \frac{{11683}}{{19683}}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.