Bộ 20 đề thi học kì 1 Toán 11 năm 2022 - 2023 có đáp án (Đề 17)
33 người thi tuần này 4.6 11.3 K lượt thi 30 câu hỏi 90 phút
🔥 Đề thi HOT:
12 câu Trắc nghiệm Toán 11 Kết nối tri thức Giá trị lượng giác của góc lượng giác có đáp án
Bộ 20 đề thi giữa học kì 1 Toán 11 năm 2022 - 2023 có đáp án (Đề 1)
184 câu Trắc nghiệm Toán 11 Bài 1: Hàm số lượng giác có đáp án (Mới nhất)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
24 câu Trắc nghiệm Ôn tập Toán 11 Chương 2 Hình học có đáp án
29 câu Trắc nghiệm Đại số và Giải tích 11 Bài 1 (Có đáp án): Hàm số lượng giác
10 Bài tập Biểu diễn góc lượng giác trên đường tròn lượng giác (có lời giải)
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
Lời giải
Đáp án C
Phương pháp:
Giải phương trình lượng giác cơ bản: \[\tan x = \tan \alpha \Leftrightarrow x = \alpha + k\pi \left( {k \in \mathbb{Z}} \right).\]
Cách giải:
\[\tan \frac{x}{4} = - 1 \Leftrightarrow \frac{x}{4} = \frac{{ - \pi }}{4} + k\pi \Leftrightarrow x = - \pi + 4k\pi \left( {k \in \mathbb{Z}} \right)\]
\[x \in \left[ {0;12\pi } \right] \Leftrightarrow 0 \le - \pi + 4k\pi \le 12\pi \Leftrightarrow \frac{1}{4} \le k \le \frac{{13}}{4}\left( {k \in \mathbb{Z}} \right) \Leftrightarrow k \in \left\{ {1;2;3} \right\}.\]
Vậy phương trình đã cho có 3 nghiệm thuộc \[\left[ {0;12\pi } \right]\]
Câu 2
Lời giải
Đáp án A
Phương pháp:
+) Giải phương trình lượng giác cơ bản: \[\sin x = \sin \alpha \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k2\pi \\x = \pi - \alpha + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right),\] sau đó tìm các nghiệm thuộc \[\left[ {0;10\pi } \right]\] của phương trình.
+) Tính tổng các nghiệm: sử dụng công thức tổng n số hạng đầu tiên của CSC: \[{S_n} = \frac{{\left( {{u_1} + {u_n}} \right).n}}{2}.\]
Cách giải:
\[\sin x = 0 \Leftrightarrow x = k\pi \left( {k \in \mathbb{Z}} \right)\]
\[x \in \left[ {0;10\pi } \right] \Leftrightarrow 0 \le k\pi \le 10\pi \Leftrightarrow 0 \le k \le 10 \Leftrightarrow k \in \left\{ {0;1;2;...;10} \right\}\]
Khi đó tổng các nghiệm thuộc \[\left[ {0;10\pi } \right]\] của phương trình trên là:
\[0 + \pi + 2\pi + 3\pi + ... + 10\pi = \left( {0 + 1 + 2 + ... + 10} \right)\pi = \frac{{10.11}}{2}\pi = 55\pi .\]
Câu 3
Lời giải
Đáp án C
Phương pháp:
Giải phương trình lượng giác cơ bản: \[\sin x = \sin \alpha \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k2\pi \\x = \pi - \alpha + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right),\] sau đó tìm các nghiệm thuộc \[x \in \left[ {0;2\pi } \right]\] của phương trình.
Cách giải:
\[\sin x = \frac{{\sqrt 2 }}{2} \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{4} + k2\pi \\x = \frac{{3\pi }}{4} + l2\pi \end{array} \right.\left( {k,l \in \mathbb{Z}} \right).\]
Xét họ nghiệm \[x = \frac{\pi }{4} + k2\pi \in \left[ {0;2\pi } \right]\] ta có: \[0 \le \frac{\pi }{4} + k2\pi \le 2\pi \Leftrightarrow - \frac{1}{8} \le k \le \frac{7}{8} \Leftrightarrow k = 0.\]
Xét họ nghiệm \[x = \frac{{3\pi }}{4} + l2\pi \in \left[ {0;2\pi } \right]\] ta có: \[0 \le \frac{{3\pi }}{4} + l2\pi \le 2\pi \Leftrightarrow - \frac{3}{8} \le l \le \frac{5}{8} \Leftrightarrow l = 0.\]
Vậy phương trình đã cho có 2 nghiệm thuộc \[\left[ {0;2\pi } \right]\] là \[\frac{\pi }{4};\frac{{3\pi }}{4}.\]
Câu 4
Lời giải
Đáp án A
Phương pháp:
Phương trình dạng \[a\sin x + b\cos x = c\] có nghiệm \[ \Leftrightarrow {a^2} + {b^2} \ge {c^2}.\]
Cách giải:
Phương trình \[\sin x - \sqrt 3 m\cos x = 2m\] có nghiệm \[ \Leftrightarrow 1 + {\left( {\sqrt 3 m} \right)^2} \ge \left( {2{m^2}} \right) \Leftrightarrow {m^2} \le 1 \Leftrightarrow - 1 \le m \le 1.\]
Câu 5
Lời giải
Đáp án C
Phương pháp:
\[ - 1 \le \cos x \le 1{\rm{ }}\forall x \in \mathbb{R}.\]
Cách giải:
Ta có: \[ - 1 \le \cos x \le 1{\rm{ }}\forall x \in \mathbb{R} \Leftrightarrow - 1 \le {\left( {m - 1} \right)^2} \le 1 \Leftrightarrow {\left( {m - 1} \right)^2} \le 1 \Leftrightarrow - 1 \le m - 1 \le 1 \Leftrightarrow 0 \le m \le 2.\]
Chú ý: Những phương trình luôn đúng ta không giải, nhiều học sinh mắc sai lầm khi giải bất phương trình \[{\left( {m - 1} \right)^2} \ge - 1\] bằng phương pháp bình phương hai vế.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 9
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 10
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 11
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 12
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 13
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 14
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 15
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 16
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 17
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 18
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 19
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 20
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 21
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 22
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 24
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.