Câu hỏi:

13/07/2024 565

Giải các phương trình lượng giác sau:

1) \[{\sin ^2}x + 5\sin x\cos x + 6{\cos ^2}x = 6\]

Sách mới 2k7: Sổ tay Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 30k).

Sổ tay Toán-lý-hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp:

1) TH1: \[\cos x = 0.\]

TH2: \[\cos x \ne 0,\] chia cả 2 vế của phương trình cho \[{\cos ^2}x,\]  sử dụng công thức \[\frac{1}{{{{\cos }^2}x}} = 1 + {\tan ^2}x,\] đưa về phương trình bậc hai ẩn \[\tan x.\]

Cách giải:

1) \[{\sin ^2}x + 5\sin x\cos x + 6{\cos ^2}x = 6\]

TH1: \[\cos x = 0 \Leftrightarrow {\sin ^2}x = 1,\] khi đó phương trình trở thành \[1 = 6\] (vô nghiệm).

TH2: \[\cos x \ne 0.\] Chia cả 2 vế của phương trình cho \[{\cos ^2}x,\] ta được:

\[{\tan ^2}x + 5\tan x + 6 = 6\left( {1 + {{\tan }^2}x} \right) \Leftrightarrow 5{\tan ^2}x - 5\tan x = 0\]

\[ \Leftrightarrow 5\tan x\left( {\tan x - 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}\tan x = 0\\\tan x = 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = k\pi \\x = \frac{\pi }{4} + k\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\]

Vậy nghiệm của hệ phương trình là \[S = \left\{ {k\pi ;\frac{\pi }{4} + k\pi |k \in \mathbb{Z}} \right\}.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Nghiệm của phương trình \[\tan x = \tan 3x\] là:

Xem đáp án » 04/02/2023 3,096

Câu 2:

3) \[\cos 3x - \sin 2x - \cos x = 0\]

Xem đáp án » 13/07/2024 1,714

Câu 3:

Chu kỳ của hàm số \[y = f\left( x \right) = \tan \frac{x}{4}\] là:

Xem đáp án » 04/02/2023 525

Câu 4:

Tổng tất cả các nghiệm \[x \in \left[ {0;10\pi } \right]\] của phương trình \[{\mathop{\rm sinx}\nolimits} = 0\] là:

Xem đáp án » 04/02/2023 446

Câu 5:

Trong khai triển \[f\left( x \right) = {\left( {x + 1} \right)^6} = {a_6}{x^6} + {a_5}{x^5} + {a_4}{x^4} + {a_3}{x^3} + {a_2}{x^2} + {a_1}x + {a_0}\] thì hệ số \[{a_4}\] là:

Xem đáp án » 04/02/2023 423

Câu 6:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của SA, SB, P là trọng tâm của tam giác BCD.

1) Chứng minh rằng: Đường thẳng MN song song với mặt phẳng \[\left( {{\rm{SCD}}} \right){\rm{.}}\]

2) Tìm giao tuyến của \[{\rm{mp}}\left( {{\rm{MNP}}} \right)\]\[{\rm{mp}}\left( {{\rm{ABCD}}} \right){\rm{.}}\]

3) Tìm giao điểm G của đường thẳng SC và \[{\rm{mp}}\left( {{\rm{MNP}}} \right){\rm{.}}\] Tính tỷ số \[\frac{{SC}}{{SG}}.\]

Xem đáp án » 04/02/2023 393

Bình luận


Bình luận
Vietjack official store