Câu hỏi:

04/02/2023 3,095

Nghiệm của phương trình \[\tan x = \tan 3x\] là:

Đáp án chính xác

Sách mới 2k7: Sổ tay Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 30k).

Sổ tay Toán-lý-hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Phương pháp:

Giải phương trình lượng giác cơ bản: \[\tan x = \tan \alpha \Leftrightarrow x = \alpha + k\pi \left( {k \in \mathbb{Z}} \right).\]

Cách giải:

ĐK: \[\left\{ \begin{array}{l}\cos x \ne 0\\\cos 3x \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\cos x \ne 0\\4{\cos ^3}x - 3\cos x \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\cos x \ne 0\\4{\cos ^2}x - 3 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\cos x \ne 0\\\cos x \ne \pm \frac{{\sqrt 3 }}{2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne \frac{\pi }{2} + k\pi \\x \ne \pm \frac{\pi }{6} + k2\pi \end{array} \right.\]

\[\tan x = \tan 3x \Leftrightarrow 3x = x + k\pi \Leftrightarrow 2x = k\pi \Leftrightarrow x = \frac{{k\pi }}{2}\left( {k \in \mathbb{Z}} \right).\]

Đối chiếu điều kiện ta có \[x = k\pi \left( {k \in \mathbb{Z}} \right).\]

Chú ý: HS chú ý điều kiện của phương trình để loại nghiệm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

3) \[\cos 3x - \sin 2x - \cos x = 0\]

Xem đáp án » 13/07/2024 1,714

Câu 2:

Giải các phương trình lượng giác sau:

1) \[{\sin ^2}x + 5\sin x\cos x + 6{\cos ^2}x = 6\]

Xem đáp án » 13/07/2024 565

Câu 3:

Chu kỳ của hàm số \[y = f\left( x \right) = \tan \frac{x}{4}\] là:

Xem đáp án » 04/02/2023 524

Câu 4:

Tổng tất cả các nghiệm \[x \in \left[ {0;10\pi } \right]\] của phương trình \[{\mathop{\rm sinx}\nolimits} = 0\] là:

Xem đáp án » 04/02/2023 445

Câu 5:

Trong khai triển \[f\left( x \right) = {\left( {x + 1} \right)^6} = {a_6}{x^6} + {a_5}{x^5} + {a_4}{x^4} + {a_3}{x^3} + {a_2}{x^2} + {a_1}x + {a_0}\] thì hệ số \[{a_4}\] là:

Xem đáp án » 04/02/2023 423

Câu 6:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của SA, SB, P là trọng tâm của tam giác BCD.

1) Chứng minh rằng: Đường thẳng MN song song với mặt phẳng \[\left( {{\rm{SCD}}} \right){\rm{.}}\]

2) Tìm giao tuyến của \[{\rm{mp}}\left( {{\rm{MNP}}} \right)\]\[{\rm{mp}}\left( {{\rm{ABCD}}} \right){\rm{.}}\]

3) Tìm giao điểm G của đường thẳng SC và \[{\rm{mp}}\left( {{\rm{MNP}}} \right){\rm{.}}\] Tính tỷ số \[\frac{{SC}}{{SG}}.\]

Xem đáp án » 04/02/2023 392

Bình luận


Bình luận
Vietjack official store