Câu hỏi:

04/02/2023 1,089 Lưu

Tổng tất cả các nghiệm \[x \in \left[ {0;10\pi } \right]\] của phương trình \[{\mathop{\rm sinx}\nolimits} = 0\] là:

A. \[55\pi \]
B. \[100\pi \]
C. \[25\pi \]
D. Kết quả khác

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án A

Phương pháp:

+) Giải phương trình lượng giác cơ bản: \[\sin x = \sin \alpha \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k2\pi \\x = \pi - \alpha + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right),\] sau đó tìm các nghiệm thuộc \[\left[ {0;10\pi } \right]\] của phương trình.

+) Tính tổng các nghiệm: sử dụng công thức tổng n số hạng đầu tiên của CSC: \[{S_n} = \frac{{\left( {{u_1} + {u_n}} \right).n}}{2}.\]

Cách giải:

\[\sin x = 0 \Leftrightarrow x = k\pi \left( {k \in \mathbb{Z}} \right)\]

\[x \in \left[ {0;10\pi } \right] \Leftrightarrow 0 \le k\pi \le 10\pi \Leftrightarrow 0 \le k \le 10 \Leftrightarrow k \in \left\{ {0;1;2;...;10} \right\}\]

Khi đó tổng các nghiệm thuộc \[\left[ {0;10\pi } \right]\] của phương trình trên là:

\[0 + \pi + 2\pi + 3\pi + ... + 10\pi = \left( {0 + 1 + 2 + ... + 10} \right)\pi = \frac{{10.11}}{2}\pi = 55\pi .\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[x = \frac{{k\pi }}{2}\left( {k \in \mathbb{Z}} \right)\]
B. \[x = k\pi \left( {k \in \mathbb{Z}} \right)\]
C. \[x = k2\pi \left( {k \in \mathbb{Z}} \right)\]
D. Kết quả khác

Lời giải

Đáp án B

Phương pháp:

Giải phương trình lượng giác cơ bản: \[\tan x = \tan \alpha \Leftrightarrow x = \alpha + k\pi \left( {k \in \mathbb{Z}} \right).\]

Cách giải:

ĐK: \[\left\{ \begin{array}{l}\cos x \ne 0\\\cos 3x \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\cos x \ne 0\\4{\cos ^3}x - 3\cos x \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\cos x \ne 0\\4{\cos ^2}x - 3 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\cos x \ne 0\\\cos x \ne \pm \frac{{\sqrt 3 }}{2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne \frac{\pi }{2} + k\pi \\x \ne \pm \frac{\pi }{6} + k2\pi \end{array} \right.\]

\[\tan x = \tan 3x \Leftrightarrow 3x = x + k\pi \Leftrightarrow 2x = k\pi \Leftrightarrow x = \frac{{k\pi }}{2}\left( {k \in \mathbb{Z}} \right).\]

Đối chiếu điều kiện ta có \[x = k\pi \left( {k \in \mathbb{Z}} \right).\]

Chú ý: HS chú ý điều kiện của phương trình để loại nghiệm.

Lời giải

Phương pháp:

3) Sử dụng công thức biến đổi tổng thành tích \[\cos a - \cos b = - 2\sin \frac{{a + b}}{2}\sin \frac{{a - b}}{2}.\]

Cách giải:

c) \[\cos 3x - \sin 2x - \cos x = 0\]

\[ \Leftrightarrow - 2\sin 2x\sin x - \sin 2x = 0 \Leftrightarrow - \sin 2x\left( {2\sin x + 1} \right) = 0\]

\[ \Leftrightarrow \left[ \begin{array}{l}\sin 2x = 0\\\sin x = - \frac{1}{2}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}2x = k\pi \\x = \frac{{ - \pi }}{6} + k2\pi \\x = \frac{{7\pi }}{6} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{{k\pi }}{2}\\x = \frac{{ - \pi }}{6} + k2\pi \\x = \frac{{7\pi }}{6} + k2\pi \end{array} \right.{\rm{ }}\left( {k \in \mathbb{Z}} \right)\]

Vậy tập nghiệm của hệ phương trình là \[S = \left\{ {\frac{{k\pi }}{2};\frac{{ - \pi }}{6} + k2\pi ;\frac{{7\pi }}{6} + k2\pi |k \in \mathbb{Z}} \right\}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[T = 2\pi \]
B. \[T = \frac{\pi }{4}\]
C. \[T = - \frac{\pi }{4}\]
D. \[T = 4\pi \]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP