Câu hỏi:

04/02/2023 375

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của SA, SB, P là trọng tâm của tam giác BCD.

1) Chứng minh rằng: Đường thẳng MN song song với mặt phẳng \[\left( {{\rm{SCD}}} \right){\rm{.}}\]

2) Tìm giao tuyến của \[{\rm{mp}}\left( {{\rm{MNP}}} \right)\]\[{\rm{mp}}\left( {{\rm{ABCD}}} \right){\rm{.}}\]

3) Tìm giao điểm G của đường thẳng SC và \[{\rm{mp}}\left( {{\rm{MNP}}} \right){\rm{.}}\] Tính tỷ số \[\frac{{SC}}{{SG}}.\]

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp:

1) Chứng minh đường thẳng MN song song với 1 đường thẳng nằm trong mặt phẳng \[\left( {SCD} \right).\]

2) Hai mặt phẳng chứa 2 đường thẳng song song thì cắt nhau theo giao tuyến (nếu có) song song với 2 đường thẳng đó.

3) Áp dụng định lí Menelaus trong tam giác SAC: \[\frac{{MS}}{{MA}}.\frac{{PA}}{{PC}}.\frac{{GC}}{{GS}} = 1.\]

Cách giải:

a) Xét tam giác SAB có MN là đường trung bình \[ \Rightarrow MN{\rm{// }}AB\] (Tính chất đường trung bình).

Lại có \[AB{\rm{ // }}CD\] (ABCD là hình bình hành) nên \[MN{\rm{ // }}CD,\] \[CD \subset \left( {SCD} \right) \Rightarrow MN{\rm{ // }}\left( {SCD} \right).\]

b) Ta có \[\left( {MNP} \right)\]\[\left( {ABCD} \right)\] có điểm P chung.

\[MN \subset \left( {MNP} \right);{\rm{ }}AB \subset \left( {ABCD} \right);{\rm{ }}MN{\rm{ // }}AB \Rightarrow \] Giao tuyến của 2 mặt phẳng \[\left( {MNP} \right)\]\[\left( {ABCD} \right)\] là đường thẳng qua P và song song với MN, AB.

Trong \[\left( {ABCD} \right)\] kẻ \[EF{\rm{ // }}AB\left( {E \in AD;{\rm{ }}F \in BC} \right),\] khi đó ta có \[\left( {MNP} \right) \cap \left( {ABCD} \right) = EF.\]

Media VietJack

c) Gọi \[O = AC \cap BD.\] Do P là trọng tâm tam giác BCD

\[ \Rightarrow \frac{{PC}}{{PO}} = \frac{2}{3} \Rightarrow \frac{{PC}}{{\frac{1}{2}AC}} = \frac{2}{3} \Leftrightarrow \frac{{PC}}{{AC}} = \frac{1}{3} \Rightarrow \frac{{PC}}{{PA}} = \frac{1}{2}\]

Áp dụng định lí Menelaus trong tam giác SAC: \[\frac{{MS}}{{MA}}.\frac{{PA}}{{PC}}.\frac{{GC}}{{GS}} = 1 \Rightarrow 1.2.\frac{{GC}}{{GS}} = 1 \Leftrightarrow \frac{{GC}}{{GS}} = \frac{1}{2} \Rightarrow \frac{{SC}}{{SG}} = \frac{1}{2}.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Nghiệm của phương trình \[\tan x = \tan 3x\] là:

Xem đáp án » 04/02/2023 3,039

Câu 2:

3) \[\cos 3x - \sin 2x - \cos x = 0\]

Xem đáp án » 13/07/2024 1,689

Câu 3:

Giải các phương trình lượng giác sau:

1) \[{\sin ^2}x + 5\sin x\cos x + 6{\cos ^2}x = 6\]

Xem đáp án » 13/07/2024 548

Câu 4:

Chu kỳ của hàm số \[y = f\left( x \right) = \tan \frac{x}{4}\] là:

Xem đáp án » 04/02/2023 515

Câu 5:

Tổng tất cả các nghiệm \[x \in \left[ {0;10\pi } \right]\] của phương trình \[{\mathop{\rm sinx}\nolimits} = 0\] là:

Xem đáp án » 04/02/2023 439

Câu 6:

Trong khai triển \[f\left( x \right) = {\left( {x + 1} \right)^6} = {a_6}{x^6} + {a_5}{x^5} + {a_4}{x^4} + {a_3}{x^3} + {a_2}{x^2} + {a_1}x + {a_0}\] thì hệ số \[{a_4}\] là:

Xem đáp án » 04/02/2023 411

Bình luận


Bình luận
Vietjack official store