Câu hỏi:

04/02/2023 588 Lưu

Trong khai triển \[f\left( x \right) = {\left( {2x - 3} \right)^{16}} = {a_{16}}{x^{16}} + {a_{15}}{x^{15}}{a_{14}}{x^{14}} + ... + {a_3}{x^3} + {a_2}{x^2} + {a_1}x + {a_0}\] thì tổng của tất cả các hệ số là

A. \[ - 1\]
B. 1
C. 12432678
D. Kết quả khác

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án B

Phương pháp:

Sử dụng khai triển nhị thức Newton \[{\left( {a + b} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{a^k}{b^{n - k}}.} \] sau đó cho \[x = 1\] để tìm tổng các hệ số.

Cách giải:

\[{\left( {2x - 3} \right)^{16}} = \sum\limits_{k = 0}^{16} {C_{16}^k{{\left( {2x} \right)}^k}{{\left( { - 3} \right)}^{16 - k}} = \sum\limits_{k = 0}^{16} {C_{16}^k{2^k}{{\left( { - 3} \right)}^{16 - k}}.{x^k}} } \]

Khi \[x = 1\] ta có \[{\left( {2.1 - 3} \right)^{16}} = \sum\limits_{k = 0}^{16} {C_{16}^k{2^k}{{\left( { - 3} \right)}^{16 - k}}} = 1.\]

Vậy tổng tất cả hệ số trong khai triển trên là 1.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[x = \frac{{k\pi }}{2}\left( {k \in \mathbb{Z}} \right)\]
B. \[x = k\pi \left( {k \in \mathbb{Z}} \right)\]
C. \[x = k2\pi \left( {k \in \mathbb{Z}} \right)\]
D. Kết quả khác

Lời giải

Đáp án B

Phương pháp:

Giải phương trình lượng giác cơ bản: \[\tan x = \tan \alpha \Leftrightarrow x = \alpha + k\pi \left( {k \in \mathbb{Z}} \right).\]

Cách giải:

ĐK: \[\left\{ \begin{array}{l}\cos x \ne 0\\\cos 3x \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\cos x \ne 0\\4{\cos ^3}x - 3\cos x \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\cos x \ne 0\\4{\cos ^2}x - 3 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\cos x \ne 0\\\cos x \ne \pm \frac{{\sqrt 3 }}{2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne \frac{\pi }{2} + k\pi \\x \ne \pm \frac{\pi }{6} + k2\pi \end{array} \right.\]

\[\tan x = \tan 3x \Leftrightarrow 3x = x + k\pi \Leftrightarrow 2x = k\pi \Leftrightarrow x = \frac{{k\pi }}{2}\left( {k \in \mathbb{Z}} \right).\]

Đối chiếu điều kiện ta có \[x = k\pi \left( {k \in \mathbb{Z}} \right).\]

Chú ý: HS chú ý điều kiện của phương trình để loại nghiệm.

Lời giải

Phương pháp:

3) Sử dụng công thức biến đổi tổng thành tích \[\cos a - \cos b = - 2\sin \frac{{a + b}}{2}\sin \frac{{a - b}}{2}.\]

Cách giải:

c) \[\cos 3x - \sin 2x - \cos x = 0\]

\[ \Leftrightarrow - 2\sin 2x\sin x - \sin 2x = 0 \Leftrightarrow - \sin 2x\left( {2\sin x + 1} \right) = 0\]

\[ \Leftrightarrow \left[ \begin{array}{l}\sin 2x = 0\\\sin x = - \frac{1}{2}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}2x = k\pi \\x = \frac{{ - \pi }}{6} + k2\pi \\x = \frac{{7\pi }}{6} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{{k\pi }}{2}\\x = \frac{{ - \pi }}{6} + k2\pi \\x = \frac{{7\pi }}{6} + k2\pi \end{array} \right.{\rm{ }}\left( {k \in \mathbb{Z}} \right)\]

Vậy tập nghiệm của hệ phương trình là \[S = \left\{ {\frac{{k\pi }}{2};\frac{{ - \pi }}{6} + k2\pi ;\frac{{7\pi }}{6} + k2\pi |k \in \mathbb{Z}} \right\}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP