Câu hỏi:
04/02/2023 363
Điều kiện cần và đủ của tham số m để phương trình \[\cos x = {\left( {m - 1} \right)^2}\] có nghiệm là:
Câu hỏi trong đề: Bộ 20 đề thi học kì 1 Toán 11 năm 2022 - 2023 có đáp án !!
Quảng cáo
Trả lời:
Đáp án C
Phương pháp:
\[ - 1 \le \cos x \le 1{\rm{ }}\forall x \in \mathbb{R}.\]
Cách giải:
Ta có: \[ - 1 \le \cos x \le 1{\rm{ }}\forall x \in \mathbb{R} \Leftrightarrow - 1 \le {\left( {m - 1} \right)^2} \le 1 \Leftrightarrow {\left( {m - 1} \right)^2} \le 1 \Leftrightarrow - 1 \le m - 1 \le 1 \Leftrightarrow 0 \le m \le 2.\]
Chú ý: Những phương trình luôn đúng ta không giải, nhiều học sinh mắc sai lầm khi giải bất phương trình \[{\left( {m - 1} \right)^2} \ge - 1\] bằng phương pháp bình phương hai vế.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án B
Phương pháp:
Giải phương trình lượng giác cơ bản: \[\tan x = \tan \alpha \Leftrightarrow x = \alpha + k\pi \left( {k \in \mathbb{Z}} \right).\]
Cách giải:
ĐK: \[\left\{ \begin{array}{l}\cos x \ne 0\\\cos 3x \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\cos x \ne 0\\4{\cos ^3}x - 3\cos x \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\cos x \ne 0\\4{\cos ^2}x - 3 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\cos x \ne 0\\\cos x \ne \pm \frac{{\sqrt 3 }}{2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne \frac{\pi }{2} + k\pi \\x \ne \pm \frac{\pi }{6} + k2\pi \end{array} \right.\]
\[\tan x = \tan 3x \Leftrightarrow 3x = x + k\pi \Leftrightarrow 2x = k\pi \Leftrightarrow x = \frac{{k\pi }}{2}\left( {k \in \mathbb{Z}} \right).\]
Đối chiếu điều kiện ta có \[x = k\pi \left( {k \in \mathbb{Z}} \right).\]
Chú ý: HS chú ý điều kiện của phương trình để loại nghiệm.
Lời giải
Phương pháp:
Gọi số tự nhiên có 6 chữ số là \[\overline {{a_1}{a_2}{a_3}{a_4}{a_5}{a_6}} \left( {{a_i} \in \left\{ {0;1;2;3;4;5;6;7} \right\};{a_1} \ne 0} \right).\] Xét các trường hợp sau:
TH1: \[{a_1} = 5;{a_2} \ge 4,{a_2} \ne 5.\]
TH2: \[{a_1} > 5.\]
Cách giải:
Gọi số tự nhiên có 6 chữ số là \[\overline {{a_1}{a_2}{a_3}{a_4}{a_5}{a_6}} \left( {{a_i} \in \left\{ {0;1;2;3;4;5;6;7} \right\};{a_1} \ne 0} \right).\]
TH1: \[{a_1} = 5;{a_2} \ge 4,{a_2} \ne 5 \Rightarrow \] có 3 cách chọn \[{a_2}\] và có \[A_6^4\] cách chọn 4 chữ số còn lại \[ \Rightarrow \] có \[3A_6^4\] số.
TH2: \[{a_1} > 5 \Rightarrow \] có 2 cách chọn \[{a_1}\] và \[A_7^5\] cách chọn 5 chữ số còn lại \[ \Rightarrow \] có \[2A_7^5\] số.
Vậy có tất cả \[3A_6^4 + 2A_7^5 = 6120\] số thỏa mãn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.