Câu hỏi:
04/02/2023 386Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án B
Phương pháp:
Sử dụng khai triển nhị thức Newton \[{\left( {a + b} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{a^k}{b^{n - k}}.} \]
Cách giải:
Ta có: \[{\left( {x + 1} \right)^6} = \sum\limits_{k = 0}^6 {C_6^k{x^k}.} \]
\[{a_4}\] là hệ số của \[{x^4},\] ứng với \[k = 4.\] Khi đó ta có \[{a_4} = C_6^4 = 15.\]CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 3:
Giải các phương trình lượng giác sau:
1) \[{\sin ^2}x + 5\sin x\cos x + 6{\cos ^2}x = 6\]
Câu 4:
Câu 5:
Câu 6:
về câu hỏi!