Câu hỏi:

04/02/2023 107

Cho hai điểm \[A\left( {1;2} \right);{\rm{ }}I\left( {3;4} \right).\] Gọi \[A' = {V_{\left( {I;2} \right)}}\left( A \right)\] khi đó điểm \[A'\] có tọa độ là

Đáp án chính xác

Sách mới 2k7: Sổ tay Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 30k).

Sổ tay Toán-lý-hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Phương pháp:

\[{V_{\left( {I;k} \right)}}\left( A \right) = A' \Leftrightarrow \overrightarrow {IA'} = k\overrightarrow {IA} .\]

Cách giải:

\[{V_{\left( {I;2} \right)}}\left( A \right) = A'\left( {x;y} \right) \Leftrightarrow \overrightarrow {IA'} = 2\overrightarrow {IA} \Leftrightarrow \left\{ \begin{array}{l}x - 3 = 2\left( {1 - 3} \right)\\y - 4 = 2\left( {2 - 4} \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = - 1\\y = 0\end{array} \right. \Rightarrow A'\left( { - 1;0} \right).\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Nghiệm của phương trình \[\tan x = \tan 3x\] là:

Xem đáp án » 04/02/2023 3,096

Câu 2:

3) \[\cos 3x - \sin 2x - \cos x = 0\]

Xem đáp án » 13/07/2024 1,714

Câu 3:

Giải các phương trình lượng giác sau:

1) \[{\sin ^2}x + 5\sin x\cos x + 6{\cos ^2}x = 6\]

Xem đáp án » 13/07/2024 565

Câu 4:

Chu kỳ của hàm số \[y = f\left( x \right) = \tan \frac{x}{4}\] là:

Xem đáp án » 04/02/2023 525

Câu 5:

Tổng tất cả các nghiệm \[x \in \left[ {0;10\pi } \right]\] của phương trình \[{\mathop{\rm sinx}\nolimits} = 0\] là:

Xem đáp án » 04/02/2023 446

Câu 6:

Trong khai triển \[f\left( x \right) = {\left( {x + 1} \right)^6} = {a_6}{x^6} + {a_5}{x^5} + {a_4}{x^4} + {a_3}{x^3} + {a_2}{x^2} + {a_1}x + {a_0}\] thì hệ số \[{a_4}\] là:

Xem đáp án » 04/02/2023 423

Câu 7:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của SA, SB, P là trọng tâm của tam giác BCD.

1) Chứng minh rằng: Đường thẳng MN song song với mặt phẳng \[\left( {{\rm{SCD}}} \right){\rm{.}}\]

2) Tìm giao tuyến của \[{\rm{mp}}\left( {{\rm{MNP}}} \right)\]\[{\rm{mp}}\left( {{\rm{ABCD}}} \right){\rm{.}}\]

3) Tìm giao điểm G của đường thẳng SC và \[{\rm{mp}}\left( {{\rm{MNP}}} \right){\rm{.}}\] Tính tỷ số \[\frac{{SC}}{{SG}}.\]

Xem đáp án » 04/02/2023 393

Bình luận


Bình luận
Vietjack official store