Câu hỏi:
31/01/2023 166Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án D
Phương pháp:
+ Sử dụng định nghĩa phép vị tự: \[{V_{\left( {I;k} \right)}}\left( M \right) = M' \Leftrightarrow \overrightarrow {IM'} = k\overrightarrow {IM} \]
+ Sử dụng tính chất phép vị tự: Phép vị tự biến đường thẳng thành đường thẳng song song hoặc trùng với nó.
Cách giải:
Gọi \[d' = {V_{\left( {O;2} \right)}}\left( d \right) \Rightarrow d'//d \Rightarrow \] Phương trình \[d'\] có dạng \[3x - 2y + c = 0\].
Lấy \[A\left( { - 1;1} \right) \in d\]. Gọi \[A' = {V_{\left( {O;2} \right)}} \Rightarrow \overrightarrow {OA'} = 2\overrightarrow {OA} \Rightarrow \left\{ \begin{array}{l}{x_{A'}} = 2.\left( { - 1} \right) = - 2\\{y_{A'}} = 2.\left( { - 1} \right) = - 2\end{array} \right. \Rightarrow A'\left( { - 2; - 2} \right)\].
Vì \[A' \in d' \Rightarrow 3.\left( { - 2} \right) - 2.\left( { - 2} \right) + c = 0 \Leftrightarrow c = 2\].
Vậy \[d':3x - 2y + 2 = 0\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
2) Một hộp có 6 bi đỏ, 7 bi xanh, 8 bi vàng (các bi khác nhau). Lấy ngẫu nhiên 6 bi. Tính xác suất để lấy được ít nhất 3 bi đỏ.
Câu 4:
Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình bình hành. Gọi \[O\] là giao điểm của \[AC\] và \[BD\]. \[M\] và \[N\] lần lượt là trung điểm của \[CD\] và \[SA\]. \[G\] là trọng tâm tam giác \[SAB\].
1) Tìm giao tuyến của hai mặt phẳng \[\left( {SAC} \right)\] và \[\left( {SBD} \right)\].
2) Chứng minh \[MN\] song song với mặt phẳng \[\left( {SBC} \right)\].
3) Gọi \[\Delta \] là giao tuyến của hai mặt phẳng \[\left( {SAD} \right)\] và \[\left( {SMG} \right)\], \[P\] là giao điểm của đường thẳng \[OG\] và \[\Delta \]. Chứng minh \[P,N,D\] thẳng hàng.
Câu 5:
2) Tìm giá trị lớn nhất của hàm số \[y = 2\sqrt {\sin x + 1} - 3\].
Câu 6:
về câu hỏi!