Câu hỏi:

31/01/2023 254

Trong mặt phẳng \[Oxy\], cho đường thẳng \[d\] có phương trình \[3x - 2y + 1 = 0\]. Ảnh của đường thẳng \[d\] qua phép vị tự tâm \[O\], tỉ số \[k = 2\] có phương trình là:

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Phương pháp:

+ Sử dụng định nghĩa phép vị tự: \[{V_{\left( {I;k} \right)}}\left( M \right) = M' \Leftrightarrow \overrightarrow {IM'} = k\overrightarrow {IM} \]

+ Sử dụng tính chất phép vị tự: Phép vị tự biến đường thẳng thành đường thẳng song song hoặc trùng với nó.

Cách giải:

Gọi \[d' = {V_{\left( {O;2} \right)}}\left( d \right) \Rightarrow d'//d \Rightarrow \] Phương trình \[d'\] có dạng \[3x - 2y + c = 0\].

 Lấy \[A\left( { - 1;1} \right) \in d\]. Gọi \[A' = {V_{\left( {O;2} \right)}} \Rightarrow \overrightarrow {OA'} = 2\overrightarrow {OA} \Rightarrow \left\{ \begin{array}{l}{x_{A'}} = 2.\left( { - 1} \right) = - 2\\{y_{A'}} = 2.\left( { - 1} \right) = - 2\end{array} \right. \Rightarrow A'\left( { - 2; - 2} \right)\].

\[A' \in d' \Rightarrow 3.\left( { - 2} \right) - 2.\left( { - 2} \right) + c = 0 \Leftrightarrow c = 2\].

Vậy \[d':3x - 2y + 2 = 0\].

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cấp số cộng \[\left( {{u_n}} \right)\] có số hạng đầu \[{u_1} = 3\] và công sai \[d = 2\]. Công thức số hạng tổng quát của \[\left( {{u_n}} \right)\] là:

Xem đáp án » 31/01/2023 6,751

Câu 2:

Chọn khẳng định SAI.

Xem đáp án » 31/01/2023 5,508

Câu 3:

2) Một hộp có 6 bi đỏ, 7 bi xanh, 8 bi vàng (các bi khác nhau). Lấy ngẫu nhiên 6 bi. Tính xác suất để lấy được ít nhất 3 bi đỏ.

Xem đáp án » 13/07/2024 5,477

Câu 4:

Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình bình hành. Gọi \[O\] là giao điểm của \[AC\]\[BD\]. \[M\]\[N\] lần lượt là trung điểm của \[CD\]\[SA\]. \[G\] là trọng tâm tam giác \[SAB\].

1) Tìm giao tuyến của hai mặt phẳng \[\left( {SAC} \right)\]\[\left( {SBD} \right)\].

2) Chứng minh \[MN\] song song với mặt phẳng \[\left( {SBC} \right)\].

3) Gọi \[\Delta \] là giao tuyến của hai mặt phẳng \[\left( {SAD} \right)\]\[\left( {SMG} \right)\], \[P\] là giao điểm của đường thẳng \[OG\]\[\Delta \]. Chứng minh \[P,N,D\] thẳng hàng.

Xem đáp án » 12/07/2024 5,459

Câu 5:

Nghiệm của phương trình \[\tan 2x + \sqrt 3 = 0\] là:

Xem đáp án » 31/01/2023 4,043

Câu 6:

2) Tìm giá trị lớn nhất của hàm số \[y = 2\sqrt {\sin x + 1} - 3\].

Xem đáp án » 13/07/2024 2,789

Câu 7:

Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình bình hành tâm \[O\]. Giao tuyến của 2 mặt phẳng \[\left( {SAD} \right)\]\[\left( {SBC} \right)\] là:

Xem đáp án » 31/01/2023 2,683
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua