Câu hỏi:

31/01/2023 853

Có bao nhiêu giá trị nguyên dương của \[m\] để hàm số \[y = \sqrt {{{\left( {\sin x - \sqrt 3 \cos x} \right)}^2} - 2\sin x + 2\sqrt 3 \cos x - m + 3} \] xác định với mọi \[x \in \mathbb{R}\]?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Phương pháp:

+ Đặt \[t = \sin x - \sqrt 3 \cos x\], tìm khoảng giá trị của \[t\].

+ Đưa hàm số về ẩn \[t\] trên miền giá trị đã xác định được, lập BBT và kết luận.

Cách giải:

\[y = \sqrt {{{\left( {\sin x - \sqrt 3 \cos x} \right)}^2} - 2\sin x + 2\sqrt 3 \cos x - m + 3} \]

\[y = \sqrt {{{\left( {\sin x - \sqrt 3 \cos x} \right)}^2} - 2\left( {\sin x - \sqrt 3 \cos x} \right) - m + 3} \]

+ Đặt \[t = \sin x - \sqrt 3 \cos x = 2\left( {\frac{1}{2}\sin x - \frac{{\sqrt 3 }}{2}\cos x} \right) = 2\sin \left( {x - \frac{\pi }{3}} \right) \Rightarrow - 2 \le t \le 2\]

Khi đó hàm số trở thành \[y = \sqrt {{t^2} - 2t - m + 3} \,\,\forall t \in \left[ { - 2;2} \right]\,\,\left( * \right)\].

+ Để hàm số ban đầu xác định với mọi \[x \in \mathbb{R}\] thì hàm số xác định với mọi \[t \in \left[ { - 2;2} \right]\].

Tức là \[{t^2} - 2t - m + 3 \ge 0\,\,\forall t \in \left[ { - 2;2} \right]\].

+ Xét hàm số \[f\left( t \right) = {t^2} - 2t - m + 3\] trên \[\left[ { - 2;2} \right]\] ta có BBT:

Media VietJack

Để \[{t^2} - 2t - m + 3 \ge 0\,\,\forall t \in \left[ { - 2;2} \right]\] thì \[2 - m \ge 0 \Leftrightarrow m \le 2\].

\[m\] nguyên dương          \[ \Rightarrow m \in \left\{ {1;2} \right\}\].

Chú ý: Cần xác định chính xác khoảng giá trị của \[t\].

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án B

Phương pháp:

Công thức số hạng tổng quát của \[\left( {{u_n}} \right)\] có số hạng đầu \[{u_1}\] và công sai \[d\]\[{u_n} = {u_1} + \left( {n - 1} \right)d\]

Cách giải:

Công thức số hạng tổng quát của \[\left( {{u_n}} \right)\] có số hạng đầu \[{u_1} = 3\] và công sai \[d = 2\]

\[{u_n} = 3 + \left( {n - 1} \right)2 = 3 + 2n - 2 = 2n + 1\]

Lời giải

2) Một hộp có 6 bi đỏ, 7 bi xanh, 8 bi vàng (các bi khác nhau). Lấy ngẫu nhiên 6 bi. Tính xác suất để lấy được ít nhất 3 bi đỏ.

Phương pháp:

Sử dụng biến cố đối.

Cách giải:

Lấy ngẫu nhiên 6 viên bi \[ \Rightarrow n\left( \Omega \right) = C_{21}^6 = 54264\].

Gọi A là biến cố: “Lấy được ít nhất 3 viên bi đỏ” \[ \Rightarrow \overline A \]: “Lấy được ít hơn 3 viên bi đỏ”.

TH1: 0 bi đỏ + 6 bi khác màu đỏ (xanh hoặc vàng).

Số cách chọn là: \[C_6^0.C_{15}^6 = 5005\] cách.

TH2: 1 bi đỏ + 5 bi khác màu đỏ (xanh hoặc vàng).

Số cách chọn là: \[C_6^1.C_{15}^5 = 18018\] cách.

TH3: 2 bi đỏ + 4 bi khác màu đỏ (xanh hoặc vàng).

Số cách chọn là: \[C_6^2.C_{15}^4 = 20475\] cách.

Áp dụng quy tắc cộng ta có \[n\left( {\overline A } \right) = 5005 + 18018 + 20475 = 43498\].

Vậy \[P\left( A \right) = 1 - P\left( {\overline A } \right) = 1 - \frac{{43498}}{{54264}} = \frac{{769}}{{3876}}\].

Câu 3

Chọn khẳng định SAI.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Nghiệm của phương trình \[\tan 2x + \sqrt 3 = 0\] là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình bình hành tâm \[O\]. Giao tuyến của 2 mặt phẳng \[\left( {SAD} \right)\]\[\left( {SBC} \right)\] là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay