Câu hỏi:
31/01/2023 630Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án C
Phương pháp:
+ Đặt \[t = \sin x - \sqrt 3 \cos x\], tìm khoảng giá trị của \[t\].
+ Đưa hàm số về ẩn \[t\] trên miền giá trị đã xác định được, lập BBT và kết luận.
Cách giải:
\[y = \sqrt {{{\left( {\sin x - \sqrt 3 \cos x} \right)}^2} - 2\sin x + 2\sqrt 3 \cos x - m + 3} \]
\[y = \sqrt {{{\left( {\sin x - \sqrt 3 \cos x} \right)}^2} - 2\left( {\sin x - \sqrt 3 \cos x} \right) - m + 3} \]
+ Đặt \[t = \sin x - \sqrt 3 \cos x = 2\left( {\frac{1}{2}\sin x - \frac{{\sqrt 3 }}{2}\cos x} \right) = 2\sin \left( {x - \frac{\pi }{3}} \right) \Rightarrow - 2 \le t \le 2\]
Khi đó hàm số trở thành \[y = \sqrt {{t^2} - 2t - m + 3} \,\,\forall t \in \left[ { - 2;2} \right]\,\,\left( * \right)\].
+ Để hàm số ban đầu xác định với mọi \[x \in \mathbb{R}\] thì hàm số xác định với mọi \[t \in \left[ { - 2;2} \right]\].
Tức là \[{t^2} - 2t - m + 3 \ge 0\,\,\forall t \in \left[ { - 2;2} \right]\].
+ Xét hàm số \[f\left( t \right) = {t^2} - 2t - m + 3\] trên \[\left[ { - 2;2} \right]\] ta có BBT:
Để \[{t^2} - 2t - m + 3 \ge 0\,\,\forall t \in \left[ { - 2;2} \right]\] thì \[2 - m \ge 0 \Leftrightarrow m \le 2\].
Mà \[m\] nguyên dương \[ \Rightarrow m \in \left\{ {1;2} \right\}\].
Chú ý: Cần xác định chính xác khoảng giá trị của \[t\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
2) Một hộp có 6 bi đỏ, 7 bi xanh, 8 bi vàng (các bi khác nhau). Lấy ngẫu nhiên 6 bi. Tính xác suất để lấy được ít nhất 3 bi đỏ.
Câu 4:
Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình bình hành. Gọi \[O\] là giao điểm của \[AC\] và \[BD\]. \[M\] và \[N\] lần lượt là trung điểm của \[CD\] và \[SA\]. \[G\] là trọng tâm tam giác \[SAB\].
1) Tìm giao tuyến của hai mặt phẳng \[\left( {SAC} \right)\] và \[\left( {SBD} \right)\].
2) Chứng minh \[MN\] song song với mặt phẳng \[\left( {SBC} \right)\].
3) Gọi \[\Delta \] là giao tuyến của hai mặt phẳng \[\left( {SAD} \right)\] và \[\left( {SMG} \right)\], \[P\] là giao điểm của đường thẳng \[OG\] và \[\Delta \]. Chứng minh \[P,N,D\] thẳng hàng.
Câu 5:
2) Tìm giá trị lớn nhất của hàm số \[y = 2\sqrt {\sin x + 1} - 3\].
Câu 6:
về câu hỏi!