Câu hỏi:

30/01/2023 964

Trong không gian cho 10 điểm phân biệt, trong đó không có 4 điểm nào đồng phẳng. Số các hình tứ diện có thể kẻ được là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Phương pháp:

- Tứ diện là hình có 4 đỉnh không đồng phẳng.

- Sử dụng tổ hợp.

Cách giải:

Chọn 4 điểm từ 10 điểm ta được 1 hình tứ diện.

Vậy số tứ diện có thể kẻ được là \(C_{10}^4 = 210\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án D

Phương pháp:

Sử dụng lý thuyết các hàm số lượng giác.

Cách giải:

Media VietJack

Dựa vào đồ thị hàm số \(y = \cos x\) ta thấy hàm số đồng biến trên \(\left( { - \pi ;0} \right)\).

Lời giải

Đáp án A

Phương pháp:

Gọi số tự nhiên có 4 chữ số là \(\overline {abcd} {\rm{ }}\left( {a \ne 0} \right)\).

- Chọn lần lượt từng chữ số.

- Áp dụng quy tắc nhân.

Cách giải:

Gọi số tự nhiên có 4 chữ số là \(\overline {abcd} {\rm{ }}\left( {a \ne 0} \right)\).

Chọn \(a\) có 6 cách.

Chọn \(b,c,d\) mỗi chữ số có 7 cách chọn.

Vậy có \({6.7^3} = 2058\) số.

Chú ý: Đề bài không yêu cầu các chữ số đôi một khác nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP