Câu hỏi:
30/01/2023 486
Số các giá trị nguyên của tham số \(m\) để phương trình \(m\sin x + 3\cos x = 2m\) có nghiệm là:
Câu hỏi trong đề: Bộ 20 đề thi học kì 1 Toán 11 năm 2022 - 2023 có đáp án !!
Quảng cáo
Trả lời:
Đáp án D
Phương pháp:
Phương trình dạng \[a\sin x + b\cos x = c\] có nghiệm \[ \Leftrightarrow {a^2} + {b^2} \ge {c^2}\].
Cách giải:
Phương trình \[m\sin x + 3\cos x = 2m\] có nghiệm \[ \Leftrightarrow {m^2} + {3^2} \ge {\left( {2m} \right)^2}\].
\[ \Leftrightarrow 3{m^2} \le 9 \Leftrightarrow {m^2} \le 3 \Leftrightarrow - \sqrt 3 \le m \le \sqrt 3 \],
Lại có \[m \in \mathbb{Z} \Rightarrow m \in \left\{ { - 1;0;1} \right\}\].
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án D
Phương pháp:
Sử dụng lý thuyết các hàm số lượng giác.
Cách giải:
Dựa vào đồ thị hàm số \(y = \cos x\) ta thấy hàm số đồng biến trên \(\left( { - \pi ;0} \right)\).
Lời giải
Đáp án A
Phương pháp:
Gọi số tự nhiên có 4 chữ số là \(\overline {abcd} {\rm{ }}\left( {a \ne 0} \right)\).
- Chọn lần lượt từng chữ số.
- Áp dụng quy tắc nhân.
Cách giải:
Gọi số tự nhiên có 4 chữ số là \(\overline {abcd} {\rm{ }}\left( {a \ne 0} \right)\).
Chọn \(a\) có 6 cách.
Chọn \(b,c,d\) mỗi chữ số có 7 cách chọn.
Vậy có \({6.7^3} = 2058\) số.
Chú ý: Đề bài không yêu cầu các chữ số đôi một khác nhau.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.