Câu hỏi:

30/01/2023 304

Cho số tự nhiên \(n\) thỏa mãn \(A_n^2 = 132\). Giá trị của \(n\) là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Phương pháp:

Sử dụng công thức: \(A_n^k = \frac{{n!}}{{\left( {n - k} \right)!}}\)

Cách giải:

\(A_n^2 = 132\left( {n \ge 2,{\rm{ }}n \in \mathbb{N}} \right) \Leftrightarrow \frac{{n!}}{{\left( {n - 2} \right)!}} = 132\)

\( \Leftrightarrow n\left( {n - 1} \right) = 132 \Leftrightarrow {n^2} - n - 132 = 0 \Leftrightarrow \left[ \begin{array}{l}n = 12{\rm{ }}\left( {tm} \right)\\n = - 11{\rm{ }}\left( {ktm} \right)\end{array} \right.\)

Vậy \(n = 12\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án D

Phương pháp:

Sử dụng lý thuyết các hàm số lượng giác.

Cách giải:

Media VietJack

Dựa vào đồ thị hàm số \(y = \cos x\) ta thấy hàm số đồng biến trên \(\left( { - \pi ;0} \right)\).

Lời giải

Đáp án A

Phương pháp:

Gọi số tự nhiên có 4 chữ số là \(\overline {abcd} {\rm{ }}\left( {a \ne 0} \right)\).

- Chọn lần lượt từng chữ số.

- Áp dụng quy tắc nhân.

Cách giải:

Gọi số tự nhiên có 4 chữ số là \(\overline {abcd} {\rm{ }}\left( {a \ne 0} \right)\).

Chọn \(a\) có 6 cách.

Chọn \(b,c,d\) mỗi chữ số có 7 cách chọn.

Vậy có \({6.7^3} = 2058\) số.

Chú ý: Đề bài không yêu cầu các chữ số đôi một khác nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP