Câu hỏi:

31/01/2023 27

Hệ số của số hạng thứ 6 trong khai triển biểu thức \({\left( {2{{\rm{x}}^3} + y} \right)^{10}}\) bằng?

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Phương pháp:

Khai triển biểu thức, số hạng thứ 6 ứng với \(k = 5\) rồi tìm hệ số.

Cách giải:

Ta có: \({\left( {2{{\rm{x}}^2} + y} \right)^{10}} = \sum\limits_{k = 0}^{10} {C_{10}^k{{\left( {2{{\rm{x}}^2}} \right)}^{10 - k}}{y^k}} \). Số hạng thứ 6 ứng với \(k = 5\)

\( \Rightarrow C_{10}^5{\left( {2{{\rm{x}}^2}} \right)^{10 - 5}}{y^5} = {2^5}C_{10}^5{x^{10}}{y^5} = 8064{{\rm{x}}^{10}}{y^5}\). Hệ số là: 8064.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong đề cương ôn tập bộ môn Toán có 15 câu hỏi Đại số và 10 câu hỏi Hình học. Hỏi có bao nhiêu cách chọn ngẫu nhiên 5 câu hỏi có cả Đại số và Hình học để lập một đề kiểm tra 15 phút?

Xem đáp án » 31/01/2023 105

Câu 2:

Tìm tất cả giá trị của tham số m để phương trình \(\sin 3{\rm{x}} - m = 0\) có nghiệm?

Xem đáp án » 31/01/2023 55

Câu 3:

Cho hình chóp S.ABCD, đáy ABCD là hình thang có \(A{\rm{D // BC}}{\rm{, AB}} = BC = a\), \(BA{\rm{D}} = 60^\circ \).

a) Gọi M là trung điểm SD. Lấy điểm N nằm trên cạnh SA sao cho \(SN = 2NA\). Tìm giao điểm H của đường thẳng MN và mặt phẳng \(\left( {ABC{\rm{D}}} \right)\).

b) Gọi G là trọng tâm tam giác SAB. Mặt phẳng \(\left( \alpha \right)\) đi qua G và song song với hai đường thẳng AB, CD. Tính chu vi thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng \(\left( \alpha \right)\).

Xem đáp án » 31/01/2023 49

Câu 4:

Trong mặt phẳng Oxy, cho đường thẳng \(\Delta :2{\rm{x}} - 3y - 5 = 0\). Ảnh của đường Δ qua phép tịnh tiến theo vectơ \(\overrightarrow u = \left( { - 1;2} \right)\) là đường thẳng nào?

Xem đáp án » 31/01/2023 37

Câu 5:

Cho dãy số \(\left( {{u_n}} \right)\) có số hạng tổng quát \({u_n} = \frac{{{{\left( { - 1} \right)}^{n + 1}}}}{{{2^n}}}\). Số hạng thứ 5 của \(\left( {{u_n}} \right)\) là?

Xem đáp án » 31/01/2023 35

Câu 6:

Cho hình chóp S.ABCD có đáy ABCD là tứ giác lồi. Gọi O là giao điểm của ACBD, M là giao điểm của ABCD, N là giao điểm của ADBC. Giao tuyến của hai mặt phẳng \(\left( {SAB} \right)\)\(\left( {SC{\rm{D}}} \right)\) là?

Xem đáp án » 31/01/2023 34

Câu 7:

Cho hình chóp S.ABC. Lấy hai điểm M, N lần lượt nằm trên các cạnh SB, AB sao cho \(\frac{{SM}}{{SB}} = \frac{1}{4}\)\(NB = 3NA\). Khi đó, đường thẳng MN song song với mặt phẳng?

Xem đáp án » 31/01/2023 34

Bình luận


Bình luận