Câu hỏi:

31/01/2023 472

Trong mặt phẳng Oxy, cho đường thẳng \(\Delta :2{\rm{x}} - 3y - 5 = 0\). Ảnh của đường Δ qua phép tịnh tiến theo vectơ \(\overrightarrow u = \left( { - 1;2} \right)\) là đường thẳng nào?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Phương pháp:

Sử dụng định nghĩa về phép tịnh tiến trong mặt phẳng.

Cách giải:

Gọi \(M\left( {x;y} \right) \in \Delta ;{\rm{ }}{{\rm{T}}_{\overrightarrow n }}\left( M \right) = M'\left( {x';y'} \right) \in \Delta '\)

\( \Rightarrow \left\{ \begin{array}{l}x' = x - 1\\y' = y + 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = x' + 1\\y = y' - 2\end{array} \right. \Rightarrow M\left( {x' + 1;y' - 2} \right) \in {\rm{d}}\)

\(M \in d \Rightarrow 2\left( {x' + 1} \right) - 3\left( {y' - 2} \right) - 5 = 0 \Leftrightarrow 2{\rm{x'}} - 3y' + 3 = 0\)

Vậy phương trình ảnh của đường thẳng Δ là: \(\Delta ' = 2{\rm{x}} - 3y + 3 = 0\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án C

Phương pháp:

Xác định hai điểm chung của hai mặt phẳng.

Cách giải:

Xét \(\left( {SAB} \right)\)\(\left( {SC{\rm{D}}} \right)\) có:

+ S là điểm chung thứ nhất.

+ \(M = AB \cap C{\rm{D}} \Rightarrow \left\{ \begin{array}{l}M \in {\rm{A}}B \subset \left( {SAB} \right) \Rightarrow M \in \left( {SAB} \right)\\M \in C{\rm{D}} \subset \left( {SC{\rm{D}}} \right) \Rightarrow M \in \left( {SC{\rm{D}}} \right)\end{array} \right.\)

\( \Rightarrow M \in \left( {SAB} \right) \cap \left( {SC{\rm{D}}} \right) \Rightarrow \) M là điểm chung thứ hai.

Vậy \(\left( {SAB} \right) \cap \left( {SC{\rm{D}}} \right) = SM\).

Media VietJack

Lời giải

Đáp án B

Phương pháp:

Sử dụng định nghĩa chỉnh hợp.

Cách giải:

Số cách lấy các số tự nhiên có bốn chữ số khác nhau từ tập X gồm 6 phần tử là: \(A_6^4\).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP