Câu hỏi:

31/01/2023 317 Lưu

Cho lục giác đều ABCDEF tâm O như hình vẽ. Thực hiện liên tiếp phép quay tâm O, góc quay \(120^\circ \) và phép quay vị tự tâm O, tỉ số \( - 1\) đối với một tam giác trong lục giác đều trên ta được ảnh là tam giác OBC. Tạo ảnh của tam giác OBC là?

A. ΔOEF
B. ΔOAB
C. ΔODE
D. ΔOCD

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án D

Phương pháp:

Tìm tam giác phù hợp với các điều kiện sau đến lần lượt các điều kiện trước.

Cách giải:

Muốn thu được ảnh là tam giác OBC qua phép quay vị tự tâm O, tỉ số \( - 1\) thì tam giác thực hiện phải là tam giác OEF.

Muốn thu được ảnh là tam giác OEF thông qua phép quay tâm O, góc quay \(120^\circ \) thì tam giác quay phải là tam giác OCD.

Media VietJack

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án C

Phương pháp:

Xác định hai điểm chung của hai mặt phẳng.

Cách giải:

Xét \(\left( {SAB} \right)\)\(\left( {SC{\rm{D}}} \right)\) có:

+ S là điểm chung thứ nhất.

+ \(M = AB \cap C{\rm{D}} \Rightarrow \left\{ \begin{array}{l}M \in {\rm{A}}B \subset \left( {SAB} \right) \Rightarrow M \in \left( {SAB} \right)\\M \in C{\rm{D}} \subset \left( {SC{\rm{D}}} \right) \Rightarrow M \in \left( {SC{\rm{D}}} \right)\end{array} \right.\)

\( \Rightarrow M \in \left( {SAB} \right) \cap \left( {SC{\rm{D}}} \right) \Rightarrow \) M là điểm chung thứ hai.

Vậy \(\left( {SAB} \right) \cap \left( {SC{\rm{D}}} \right) = SM\).

Media VietJack

Câu 2

A. \(\mathbb{R}\backslash \left\{ {k2\pi ,k \in \mathbb{Z}} \right\}\)
B. \(\mathbb{R}\backslash \left\{ {k\pi ,k \in \mathbb{Z}} \right\}\)
C. \(\mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi ,k \in \mathbb{Z}} \right\}\)
D. \(\mathbb{R}\backslash \left\{ {k\frac{\pi }{2},k \in \mathbb{Z}} \right\}\)

Lời giải

Đáp án B

Phương pháp:

Phân số xác định khi mẫu số khác 0.

Cách giải:

ĐKXĐ: \(\cos 2x - 1 \ne 0 \Leftrightarrow \cos 2x \ne 1 \Leftrightarrow 2x \ne k2\pi \Leftrightarrow x \ne k\pi {\rm{ }}\left( {k \in \mathbb{Z}} \right)\).

Vậy \(D = \mathbb{R}\backslash \left\{ {k\pi ,k \in \mathbb{Z}} \right\}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(m \in \left[ { - 1;1} \right]\)
B. \(m \in \left[ { - 3;3} \right]\)
C. \(m \in \left( { - \infty ; - 1} \right) \cup \left( {1;\infty } \right)\)
D. \(m \in \left( { - \infty ; - 3} \right) \cup \left( {3;\infty } \right)\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \({\left( {x + 1} \right)^2} + {\left( {y + 8} \right)^2} = 36\)
B. \({\left( {x - 4} \right)^2} + {\left( {y + 1} \right)^2} = 36\)
C. \({\left( {x - 1} \right)^2} + {\left( {y - 8} \right)^2} = 36\)
D. \({\left( {x - 2} \right)^2} + {\left( {y + 6} \right)^2} = 36\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP