Câu hỏi:

31/01/2023 222 Lưu

Ông Nam đã trồng cây ca cao trên mảnh đất của mình có dạng hình tam giác, ông trồng ở hàng đầu tiên 3 cây ca cao, kể từ hàng thứ hai trở đi số cây phải trồng ở mỗi hàng nhiều hơn 5 cây so với số cây đã trồng ở hàng trước đó và ở hàng cuối cùng ông đã trồng 2018 cây ca cao. Số cây ca cao mà ông Nam đã trồng trên mảnh đất của mình là

A. 408.242 cây
B. 407.231 cây
C. 407.232 cây
D. 408.422 cây

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án A

Phương pháp:

Vận dụng các công thức cấp số cộng.

Cách giải:

Ta có: \({u_1} = 3;d = 5;{u_n} = 2018\)

\({u_1} + \left( {n - 1} \right).d = {u_n} \Leftrightarrow 3 + \left( {n - 1} \right).5 = 2018 \Rightarrow n = 404\)

Khi đó tổng số cây ca cao là: \(S = \frac{{n\left( {{u_1} + {u_n}} \right)}}{2} = \frac{{404.\left( {3 + 2018} \right)}}{2} = 408242\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án C

Phương pháp:

Xác định hai điểm chung của hai mặt phẳng.

Cách giải:

Xét \(\left( {SAB} \right)\)\(\left( {SC{\rm{D}}} \right)\) có:

+ S là điểm chung thứ nhất.

+ \(M = AB \cap C{\rm{D}} \Rightarrow \left\{ \begin{array}{l}M \in {\rm{A}}B \subset \left( {SAB} \right) \Rightarrow M \in \left( {SAB} \right)\\M \in C{\rm{D}} \subset \left( {SC{\rm{D}}} \right) \Rightarrow M \in \left( {SC{\rm{D}}} \right)\end{array} \right.\)

\( \Rightarrow M \in \left( {SAB} \right) \cap \left( {SC{\rm{D}}} \right) \Rightarrow \) M là điểm chung thứ hai.

Vậy \(\left( {SAB} \right) \cap \left( {SC{\rm{D}}} \right) = SM\).

Media VietJack

Lời giải

Đáp án D

Phương pháp:

Vẽ hình sau đó sử dụng định lý Ta-lét trong tam giác.

Cách giải:

Trong \(\left( {ABN} \right)\) qua M kẻ đường thẳng song song với AI cắt BN tại J.

Xét tam giác MNJ ta có: \(\left\{ \begin{array}{l}GI{\rm{ // MJ}}\\{\rm{GN}} = GM\left( {gt} \right)\end{array} \right. \Rightarrow GI = \frac{1}{2}MJ\) (1).

Xét tam giác BAI ta có: \(\left\{ \begin{array}{l}{\rm{MJ // AI}}\\{\rm{MA}} = MB\end{array} \right. \Rightarrow MJ = \frac{1}{2}AI\) (2).

Từ (1) và (2) \( \Rightarrow GI = \frac{1}{4}AI \Leftrightarrow \frac{{GI}}{{GA}} = \frac{1}{3}\).

Media VietJack

Câu 3

A. \(\mathbb{R}\backslash \left\{ {k2\pi ,k \in \mathbb{Z}} \right\}\)
B. \(\mathbb{R}\backslash \left\{ {k\pi ,k \in \mathbb{Z}} \right\}\)
C. \(\mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi ,k \in \mathbb{Z}} \right\}\)
D. \(\mathbb{R}\backslash \left\{ {k\frac{\pi }{2},k \in \mathbb{Z}} \right\}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \({\left( {x + 1} \right)^2} + {\left( {y + 8} \right)^2} = 36\)
B. \({\left( {x - 4} \right)^2} + {\left( {y + 1} \right)^2} = 36\)
C. \({\left( {x - 1} \right)^2} + {\left( {y - 8} \right)^2} = 36\)
D. \({\left( {x - 2} \right)^2} + {\left( {y + 6} \right)^2} = 36\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(m \in \left[ { - 1;1} \right]\)
B. \(m \in \left[ { - 3;3} \right]\)
C. \(m \in \left( { - \infty ; - 1} \right) \cup \left( {1;\infty } \right)\)
D. \(m \in \left( { - \infty ; - 3} \right) \cup \left( {3;\infty } \right)\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP