Quảng cáo
Đáp án D
Phương pháp:
Từ biểu thức đã có tìm tọa độ điểm A, rồi tìm ảnh của điểm qua định nghĩa phép vị tự.
Cách giải:
Ta có \(\overrightarrow {OA} = \overrightarrow i - 7\overrightarrow j \Rightarrow \left\{ \begin{array}{l}{x_A} = 1\\{y_A} = - 7\end{array} \right.\).
Nên \({V_{\left( {O; - 3} \right)}}\left( A \right) = A' \Leftrightarrow \overrightarrow {OA'} = - 3\overrightarrow {OA} \Rightarrow A'\left( { - 3;21} \right)\).
Cho hình chóp S.ABCD, đáy ABCD là hình thang có \(A{\rm{D // BC}}{\rm{, AB}} = BC = a\), \(BA{\rm{D}} = 60^\circ \).
a) Gọi M là trung điểm SD. Lấy điểm N nằm trên cạnh SA sao cho \(SN = 2NA\). Tìm giao điểm H của đường thẳng MN và mặt phẳng \(\left( {ABC{\rm{D}}} \right)\).
b) Gọi G là trọng tâm tam giác SAB. Mặt phẳng \(\left( \alpha \right)\) đi qua G và song song với hai đường thẳng AB, CD. Tính chu vi thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng \(\left( \alpha \right)\).
Gọi 084 283 45 85
Hỗ trợ đăng ký khóa học tại Vietjack
về câu hỏi!