Câu hỏi:
11/07/2024 616Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).
Quảng cáo
Trả lời:
Phương pháp:
Xác suất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}}\).
Cách giải:
Gọi số học sinh nam của trường là n (học sinh, \(n \in \mathbb{N}\))
Số phần tử của không gian mẫu: \(n\left( \Omega \right) = C_{n + 10}^5\)
Xác suất để cả 5 học sinh được chọn toàn nam: \(\frac{{C_n^5}}{{C_{n + 10}^5}}\).
Xác suất trong 5 học sinh được chọn có 2 nữ: \(\frac{{C_{10}^2C_n^3}}{{C_{n + 10}^5}}\).
Theo đề bài, ta có:
\(\frac{{C_n^5}}{{C_{n + 10}^5}} = \frac{7}{{15}}.\frac{{C_{10}^2C_n^3}}{{C_{n + 10}^5}} \Leftrightarrow 15C_n^5 = 7C_{10}^2C_n^3 \Leftrightarrow 15C_n^5 = 7.45C_n^3 \Leftrightarrow C_n^5 = 21C_n^3 \Leftrightarrow \frac{{n!}}{{5!\left( {n - 5} \right)!}} = \frac{{21.n!}}{{3!\left( {n - 3} \right)!}}\)
\( \Leftrightarrow \frac{{n!}}{{5!\left( {n - 5} \right)!}} = \frac{{21.n!}}{{3!\left( {n - 3} \right)!}} \Leftrightarrow 5.4 = \frac{{\left( {n - 3} \right)\left( {n - 4} \right)}}{{21}} \Leftrightarrow {n^2} - 7n + 12 - 420 = 0 \Leftrightarrow {n^2} - 7n - 408 = 0 \Leftrightarrow \left[ \begin{array}{l}n = 24\,\left( {TM} \right)\\n = - 17\,\left( L \right)\end{array} \right.\)\( \Rightarrow \) Số học sinh nam của lớp 11A là: 24 học sinh.
\( \Rightarrow \)Lớp 11A có tất cả số học sinh là: \(10 + 24 = 34\) (học sinh)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Câu 7:
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
20 câu trắc nghiệm Toán 11 Kết nối tri thức Mẫu số liệu ghép nhóm có đáp án
12 câu Trắc nghiệm Toán 11 Kết nối tri thức Giá trị lượng giác của góc lượng giác có đáp án
10 Bài tập Tổng của cấp số nhân lùi vô hạn và các bài toán liên quan (có lời giải)
15 câu Trắc nghiệm Đại cương về đường thẳng và mặt phẳng có đáp án (Nhận biết)
10 Bài tập Tính xác suất của biến cố hợp của hai biến cố bất kì bằng cách sử dụng công thức cộng xác suất và phương pháp tổ hợp (có lời giải)
10 Bài tập Vận dụng đạo hàm cấp hai để giải quyết một số bài toán thực tiễn (có lời giải)
10 Bài tập Trung vị, tứ phân vị của mẫu số liệu ghép nhóm và ý nghĩa (có lời giải)
về câu hỏi!