Câu hỏi:
02/02/2023 208Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Phương pháp:
Áp dụng công thức khai triển nhị thức Newton: \[{\left( {x + y} \right)^n} = \sum\limits_{i = 0}^n {C_n^i{x^i}.{y^{n - i}}} \]
Cách giải:
Ta có: \[{\left( {\frac{x}{2} - 4m} \right)^{12}} = \sum\limits_{i = 0}^{12} {C_{12}^i{{\left( {\frac{1}{2}x} \right)}^i}.{{\left( { - 4m} \right)}^{12 - i}}} = \sum\limits_{i = 0}^{12} {C_{12}^i{{\left( { - 1} \right)}^{12 - i}}{2^{24 - 3i}}{m^{12 - i}}{x^i}} \]
Hệ số của các số hạng chứa \[{x^2}\], số hạng chứa \[{x^4}\], số hạng chứa \[{x^6}\] lần lượt là:
\[a = C_{12}^2{2^{18}}{m^{10}},\,\,b = C_{12}^4{2^{12}}{m^8},\,c = C_{12}^6{2^6}{m^4}\]
Theo đề bài:
\[a = bc \Leftrightarrow C_{12}^2{2^{18}}{m^{10}} = C_{12}^4{2^{12}}{m^8}.C_{12}^6{2^6}{m^4} \Leftrightarrow C_{12}^2{m^{10}} = C_{12}^4C_{12}^6{m^{12}} \Leftrightarrow {m^{10}}\left( {66 - 495.924{m^2}} \right) = 0\]
\[ \Leftrightarrow \left[ \begin{array}{l}m = 0\\{m^2} = \frac{1}{{6930}}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = 0\\m = \pm \sqrt {\frac{1}{{6930}}} \end{array} \right.\]
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Câu 7:
Cho hình chóp S.ABCD có đáy là hình thang ABCD với đáy lớn \(BC = 2{\rm{a}}\) và \(A{\rm{D}} = AB = a\). Mặt bên SAD là tam giác đều. Gọi M là điểm bất kì thuộc cạnh AB. Mặt phẳng \(\left( \alpha \right)\) đi qua M và song song với SA, BC, cắt CD, SC, SB lần lượt tại N, P, Q.
a) Chứng minh: \(PN//\left( {SA{\rm{D}}} \right)\).
b) Gọi E là giao điểm của MQ và NP. Chứng minh rằng E luôn nằm trên một đường thẳng cố định.
c) Giả sử \(AM = x\,\left( {0 < x < a} \right)\). Tính diện tích thiết diện tạo bởi mặt phẳng \(\left( \alpha \right)\) với hình chóp S.ABCD theo a và x. Tìm vị trí của M để thiết diện đạt giá trị lớn nhất?
về câu hỏi!