Câu hỏi:

02/02/2023 859

Tìm các giá trị của tham số m để phương trình \({\sin ^6}x + {\cos ^6}x = {\cos ^2}2x + m\) có nghiệm \(x \in \left[ {0;\,\,\frac{\pi }{8}} \right]\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Phương pháp:

\({\sin ^6}x + {\cos ^6}x = {\left( {{{\sin }^2}x + {{\cos }^2}x} \right)^3} - 3{\sin ^2}x.{\cos ^2}x.\left( {{{\sin }^2}x + {{\cos }^2}x} \right) = 1 - 3{\sin ^2}x.{\cos ^2}x\)

\({\sin ^2}x = \frac{{1 - \cos 2x}}{2};\,\,{\cos ^2}x = \frac{{1 + \cos 2x}}{2}\)

Cách giải:

Ta có: \({\sin ^6}x + {\cos ^6}x = {\cos ^2}2x + m \Leftrightarrow 1 - 3{\sin ^2}x.{\cos ^2}x = {\cos ^2}2x + m \Leftrightarrow 1 - \frac{3}{4}{\sin ^2}2x = {\cos ^2}2x + m\)

\( \Leftrightarrow 1 - \frac{3}{4}.\frac{{1 - \cos 4x}}{2} = \frac{{1 + \cos 4x}}{2} + m \Leftrightarrow 8 - 3 + 3\cos 4x = 4 + 4\cos 4x + 8m \Leftrightarrow \cos 4x = 1 - 8m\)

Do \(x \in \left[ {0;\,\,\frac{\pi }{8}} \right] \Rightarrow 4x \in \left[ {0;\,\,\frac{\pi }{2}} \right] \Rightarrow 0 \le \cos 4x \le 1\).

Để phương trình đã cho có nghiệm thì \(0 \le 1 - 8m \le 1 \Leftrightarrow 0 \le m \le \frac{1}{8}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án A

Phương pháp:

Áp dụng Công thức khai triển nhị thức Newton: \({\left( {x + y} \right)^n} = \sum\limits_{i = 0}^n {C_n^i{x^i}.{y^{n - i}}} \).

Cách giải:

Hệ số của \({x^5}\) trong khai triển \(x{\left( {2{\rm{x}} - 1} \right)^6} + {\left( {3{\rm{x}} - 1} \right)^8}\) bằng tổng hệ số của \({x^4}\) trong khai triển \({\left( {2{\rm{x}} - 1} \right)^6}\) và hệ số của \({x^5}\) trong khai triển \({\left( {3{\rm{x}} - 1} \right)^8}\).

+) \({\left( {2{\rm{x}} - 1} \right)^6} = \sum\limits_{i = 0}^6 {C_6^i{{\left( {2{\rm{x}}} \right)}^i}.{{\left( { - 1} \right)}^{6 - i}} = \sum\limits_{i = 0}^6 {C_6^i{2^i}{{\left( { - 1} \right)}^{6 - i}}{x^i}} } \).

Hệ số của \({x^4}\) trong khai triển \({\left( {2{\rm{x}} - 1} \right)^6}\) ứng với \(i = 4\) và bằng \(C_6^4{2^4}{\left( { - 1} \right)^{6 - 4}} = 240\).

+) \({\left( {{\rm{3x}} - 1} \right)^8} = \sum\limits_{k = 0}^8 {C_8^k{{\left( {3{\rm{x}}} \right)}^k}.{{\left( { - 1} \right)}^{8 - k}} = \sum\limits_{k = 0}^8 {C_8^k{3^k}{{\left( { - 1} \right)}^{8 - k}}{x^k}} } \).

Hệ số của \({x^5}\) trong khai triển \({\left( {3{\rm{x}} - 1} \right)^8}\) ứng với \(k = 5\) và bằng \(C_8^5{3^5}{\left( { - 1} \right)^{6 - 3}} = - 13608\)

\( \Rightarrow \)Hệ số của \({x^5}\) trong khai triển \(x{\left( {2{\rm{x}} - 1} \right)^6} + {\left( {3{\rm{x}} - 1} \right)^8}\) là: \(240 - 13608 = - 13368\).

Lời giải

Đáp án B

Phương pháp:

Áp dụng công thức cộng và nhân xác suất.

Cách giải:

Xác suất để không có ai bắn trúng là: \(\left( {1 - 0,8} \right)\left( {1 - 0,6} \right) = 0,2.0,4 = 0,08\).

Xác suất để có ít nhất một người bắn trúng là: \(1 - 0,08 = 0,92\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP