Câu hỏi:

02/02/2023 436 Lưu

Trong các dãy số \(\left( {{u_n}} \right)\) xác định bởi số hạng tổng quát \({u_n}\) sau, hỏi dãy số nào là dãy số giảm?

A. \[{u_n} = {2^n}\].
B. \[{u_n} = 2n - 5\].
C. \[{u_n} = {\left( { - 3} \right)^n}\].
D. \[{u_n} = \frac{{1 - n}}{{3n + 2}}\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án D

Phương pháp:

Dãy số \(\left( {{u_n}} \right)\) giảm nếu \(0 < \frac{{{u_{n + 1}}}}{{{u_n}}} < 1\) hoặc \({u_{n + 1}} - {u_n} < 0\).

Cách giải:

Đáp án A: \(\frac{{{u_{n + 1}}}}{{{u_n}}} < \frac{{{2^{n + 1}}}}{{{2^n}}} = 2 > 1\) nên dãy số tăng.

Đáp án B: \({u_{n + 1}} - {u_n} = 2\left( {n + 1} \right) - 5 - 2n + 5 = 2 > 0\) nên dãy số tăng.

Đáp án C: Dãy số \( - 3;9; - 27;81;...\) không tăng không giảm.

Đáp án D: \({u_{n + 1}} - {u_n} = \frac{{1 - \left( {n + 1} \right)}}{{3\left( {n + 1} \right) + 2}} - \frac{{1 - n}}{{3n + 2}} = \frac{{ - n}}{{3n + 5}} - \frac{{1 - n}}{{3n + 2}} = \frac{{ - 3{n^2} - 2n - 3n - 5 + 3{n^2} + 5n}}{{\left( {3n + 5} \right)\left( {3n + 2} \right)}}\)

\( = \frac{{ - 5}}{{\left( {3n + 5} \right)\left( {3n + 2} \right)}} < 0\)

Do đó dãy số \(\left( {{u_n}} \right)\) giảm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \({u_5} = \frac{7}{4}\).
B. \({u_5} = \frac{7}{9}\).
C. \({u_5} = \frac{{24}}{{51}}\).
D. \({u_5} = \frac{4}{7}\).

Lời giải

Đáp án D

Phương pháp:

Thay \(n = 5\) vào công thức hàm số và tính toán.

Cách giải:

Ta có: \({u_5} = \frac{{{5^2} + 3}}{{{{2.5}^2} - 1}} = \frac{4}{7}\).

Lời giải

Đáp án B

Phương pháp:

Nhận xét vị trí tương đối của đường thẳng a, b và kết luận.

Cách giải:

Nếu \(a//\left( \alpha \right)\), \(b \subset \left( \alpha \right)\) thì \(a//b\) hoặc a chéo b .

Câu 3

A. Qua một điểm nằm ngoài mặt phẳng cho trước ta vẽ được một và chỉ một đường thẳng song song với mặt phẳng cho trước đó.
B. Nếu hai mặt phẳng \(\left( \alpha \right)\)\(\left( \beta \right)\) song song với nhau thì mọi đường thẳng nằm trong \(\left( \alpha \right)\) đều song song với mọi đường thẳng nằm trong \(\left( \beta \right)\).
C. Nếu hai đường thẳng song song với nhau lần lượt nằm trong hai mặt phẳng phân biệt \(\left( \alpha \right)\)\(\left( \beta \right)\) thì \(\left( \alpha \right)\)\(\left( \beta \right)\) song song với nhau.
D. Nếu hai mặt phẳng \(\left( \alpha \right)\)\(\left( \beta \right)\) song song với nhau thì mọi đường thẳng nằm trong \(\left( \alpha \right)\) đều song song với \(\left( \beta \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\left( {HA'C} \right)\).
B. \(\left( {HAB} \right)\).
C. \(\left( {AHC'} \right)\).
D. \(\left( {AA'H} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP