Cho hình hộp \(ABCD.A'B'C'D'\). Lấy E, F lần lượt là trung điểm các cạnh AB, \(CC'\) và O là tâm của đáy \(A'B'C'D'\). Gọi I là giao điểm của BC và mặt phẳng \(\left( {FOE} \right)\). Tính tỉ số \(\frac{{IC}}{{IB}}\) và xác định thiết diện của hình hộp cắt bởi mặt phẳng \(\left( {FOE} \right)\).
Quảng cáo
Trả lời:
Phương pháp:
Gọi N là trung điểm của \(A'B'\), G là giao điểm của \(NC'\) với EF.
Từ đó mở rộng mặt phẳng \(\left( {FOE} \right)\) rồi tìm giao tuyến của \(\left( {FOE} \right)\) với các mặt của hình hộp.
Cách giải:

Gọi N là trung điểm của \(A'B' \Rightarrow NE//FC'\) nên bốn điểm N, E, F, C đồng phẳng.
Trong \(\left( {NEFC} \right)\), gọi \(G = NC' \cap EF \Rightarrow G \in EF \subset \left( {FOE} \right)\).
Trong \(\left( {A'B'C'D'} \right)\), gọi H, K lần lượt là giao điểm của GO với \(D'C'\), \(A'B'\)
Khi đó \(\left( {FOE} \right) \equiv \left( {GKE} \right)\).
Trong \(\left( {ABB'A'} \right)\), gọi \(P = KE \cap B'B \Rightarrow P \in BB' \subset \left( {BCC'B'} \right)\).
Trong \(\left( {BCC'B'} \right)\), gọi \(I = PF \cap BC \Rightarrow \left\{ \begin{array}{l}I \in BC\\I \in PF \subset \left( {GKE} \right) \equiv \left( {FOE} \right)\end{array} \right. \Rightarrow I = BC \cap \left( {FOE} \right)\).
Khi đó
\(\left( {FOE} \right) \cap \left( {A'B'C'D'} \right) = HK\)
\(\left( {FOE} \right) \cap \left( {ABB'A'} \right) = KE\)
\(\left( {FOE} \right) \cap \left( {ABCD} \right) = EI\)
\(\left( {FOE} \right) \cap \left( {BCC'B'} \right) = IF\)
\(\left( {FOE} \right) \cap \left( {DCC'D'} \right) = FH\)
Thiết diện là ngũ giác EIFHK.
Ta có, \(\frac{{IB}}{{IC}} = \frac{{PB}}{{CF}}\), \(CF = \frac{1}{2}CC' \Rightarrow \frac{{PB}}{{CF}} = \frac{{PB}}{{\frac{1}{2}CC'}} = 2.\frac{{PB}}{{BB'}}\) .
\(HC'//KN \Rightarrow \frac{{HC'}}{{KN}} = \frac{{GC'}}{{GN}}\)
Mà \(C'F//NE \Rightarrow \frac{{GC'}}{{GN}} = \frac{{C'F}}{{NE}} = \frac{1}{2} \Rightarrow \frac{{HC'}}{{KN}} = \frac{1}{2} \Rightarrow \frac{{A'K}}{{KN}} = \frac{1}{2} \Rightarrow \frac{{A'K}}{{A'N}} = \frac{1}{3} \Rightarrow \frac{{A'K}}{{A'B'}} = \frac{1}{6}\)
\( \Rightarrow \frac{{KN}}{{A'N}} = \frac{2}{3} = \frac{{K'N}}{{NB'}} \Rightarrow \frac{{K'N}}{{NB'}} = \frac{2}{5} \Rightarrow \frac{{NE}}{{PB'}} = \frac{2}{5} \Rightarrow \frac{{BB'}}{{PB'}} = \frac{2}{5} \Rightarrow \frac{{PB}}{{PB'}} = \frac{3}{5} \Rightarrow \frac{{PB}}{{BB'}} = \frac{3}{2}\)
Vậy \(\frac{{IB}}{{IC}} = \frac{{PB}}{{CF}} = 2.\frac{{PB}}{{BB'}} = 2.\frac{3}{2} = 3\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án D
Phương pháp:
Thay \(n = 5\) vào công thức hàm số và tính toán.
Cách giải:
Ta có: \({u_5} = \frac{{{5^2} + 3}}{{{{2.5}^2} - 1}} = \frac{4}{7}\).
Câu 2
Lời giải
Đáp án B
Phương pháp:
Nhận xét vị trí tương đối của đường thẳng a, b và kết luận.
Cách giải:
Nếu \(a//\left( \alpha \right)\), \(b \subset \left( \alpha \right)\) thì \(a//b\) hoặc a chéo b .
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.