Câu hỏi:

03/02/2023 1,975

Trong khai triển nhị thức Newton của biểu thức \[{\left( {x + \frac{2}{{{x^2}}}} \right)^{12}}\] (với \[x \ne 0\]), tìm hệ số của số hạng chứa \[{x^3}.\]

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Phương pháp:

Sử dụng khai triển nhị thức Newton: \[{\left( {a + b} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{a^{n - k}}{b^k}.} \]

Cách giải:

\[{\left( {x + \frac{2}{{{x^2}}}} \right)^{12}} = \sum\limits_{k = 0}^{12} {C_{12}^k{x^{12 - k}}{{\left( {\frac{2}{{{x^2}}}} \right)}^k} = \sum\limits_{k = 0}^{12} {C_{12}^k{2^k}{x^{12 - 3k}}} \left( {0 \le k \le 12,k \in \mathbb{N}} \right).} \]

Số hạng chứa \[{x^3}\] ứng với \[12 - 3k = 3 \Leftrightarrow 3k = 9 \Leftrightarrow k = 3{\rm{ }}\left( {tm} \right).\]

Vậy hệ số của số hạng chứa \[{x^3}\]\[C_{12}^3{.2^3}.\]

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một hộp đựng 10 viên bi khác nhau, trong đó có 6 viên bi xanh và 4 viên bi đỏ. Có bao nhiêu cách chọn từ hộp đó ra 3 viên bi gồm 2 viên bi xanh và 1 viên bi đỏ?

Xem đáp án » 03/02/2023 10,537

Câu 2:

Cho hình chóp S.ABCD có đáy ABCD là hình thang, biết AB song song với CD\[AB = 2CD,\] O là giao điểm của ACBD. Gọi M, N là trung điểm của SB SD.

a) Xác định giao tuyến của hai mặt phẳng \[\left( {SAB} \right)\]\[\left( {SCD} \right).\]

b) Xác định giao điểm của SC\[\left( {AMN} \right).\]

c) Gọi G là trọng tâm \[\Delta SBC.\] Chứng minh rằng OG song song với mặt phẳng \[\left( {SCD} \right).\]

Xem đáp án » 13/07/2024 4,028

Câu 3:

Tìm tập xác định D của hàm số \[y = \tan x?\]

Xem đáp án » 03/02/2023 3,696

Câu 4:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, K lần lượt là trung điểm của CD, CB, SA. Mệnh đề nào sau đây đúng?

Xem đáp án » 03/02/2023 3,345

Câu 5:

Cho A, B là hai biến cố độc lập cùng liên quan đến phép thử T, xác suất xảy ra biến cố A\[\frac{1}{2},\] xác suất xảy ra biến cố B\[\frac{1}{4}.\] Xác suất xảy ra biến cố AB là:

Xem đáp án » 03/02/2023 2,523

Câu 6:

Từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 lập được bao nhiêu số tự nhiên có 3 chữ số đôi một khác nhau và số đó chia hết cho 5?

Xem đáp án » 03/02/2023 2,235

Câu 7:

Khẳng định nào sau đây đúng?

Xem đáp án » 03/02/2023 1,978
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua