Câu hỏi:
13/07/2024 4,008Cho hình chóp S.ABCD có đáy ABCD là hình thang, biết AB song song với CD và \[AB = 2CD,\] O là giao điểm của AC và BD. Gọi M, N là trung điểm của SB và SD.
a) Xác định giao tuyến của hai mặt phẳng \[\left( {SAB} \right)\] và \[\left( {SCD} \right).\]
b) Xác định giao điểm của SC và \[\left( {AMN} \right).\]
c) Gọi G là trọng tâm \[\Delta SBC.\] Chứng minh rằng OG song song với mặt phẳng \[\left( {SCD} \right).\]
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
Phương pháp:
a) Xác định giao tuyến dựa vào yếu tố song song.
b) Chọn \[SC \subset \left( {SAC} \right),\] xác định giao tuyến \[\Delta = \left( {AMN} \right) \cap \left( {SAC} \right).\] Khi đó giao điểm của SC và \[\left( {AMN} \right)\] chính là giao điểm của SC và \[\Delta .\]
c) \[d||a \subset \left( P \right) \Rightarrow d||\left( P \right).\]
Cách giải:
a) Xét \[\left( {SAB} \right)\] và \[\left( {SCD} \right)\] có:
+ S là điểm chung thứ nhất.
+ \[\left\{ \begin{array}{l}\left( {SAB} \right) \supset AB\\\left( {SCD} \right) \supset CD\\AB||CD{\rm{ }}\left( {gt} \right)\end{array} \right. \Rightarrow \]Giao tuyến của \[\left( {SAB} \right),{\rm{ }}\left( {SCD} \right)\] là đường thẳng đi qua S và song song với AB, CD.
Trong \[\left( {SAB} \right)\] kẻ đường thẳng d đi qua S và \[d||AB||CD.\]
Vậy \[d = \left( {SAB} \right) \cap \left( {SCD} \right).\]
b) Chọn \[SC \subset \left( {SAC} \right),\] tìm giao tuyến của \[\left( {SAC} \right)\] và \[\left( {AMN} \right).\]
+ A là điểm chung thứ nhất.
+ Trong \[\left( {SBD} \right)\] gọi \[I = MN \cap SO\] ta có: \[I \in SO \subset \left( {SAC} \right) \Rightarrow I \in \left( {SAC} \right).\]
Trong \[\left( {SAC} \right)\] gọi \[E = AI \cap SC\] ta có:
\[\left\{ \begin{array}{l}E \in AI \subset \left( {AMN} \right) \Rightarrow E \in \left( {AMN} \right)\\E \in SC\end{array} \right. \Rightarrow E = SC \cap \left( {AMN} \right).\]
c) Gọi K là trung điểm của SC.
Vì G là trọng tâm tam giác SBC \[ \Rightarrow G \in BK\] và \[\frac{{BG}}{{BK}} = \frac{2}{3}\] (Tính chất trọng tâm).
Do \[AB||CD{\rm{ }}\left( {gt} \right),\] áp dụng định lí Ta-lét ta có: \[\frac{{BO}}{{OD}} = \frac{{AB}}{{CD}} = 2 \Rightarrow \frac{{BO}}{{BD}} = \frac{2}{3}.\]
\[ \Rightarrow \frac{{BG}}{{BK}} = \frac{{BO}}{{BD}} = \frac{2}{3} \Rightarrow OG||DK\] (Định lí Ta-lét đảo).
Mà \[DK \subset \left( {SCD} \right).\] Vậy \[OG||\left( {SCD} \right).\]
Đã bán 211
Đã bán 244
Đã bán 1k
Đã bán 218
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 3:
Câu 4:
Câu 6:
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
100 câu trắc nghiệm Đạo hàm cơ bản (P1)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận