Câu hỏi:
11/07/2024 360Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).
Quảng cáo
Trả lời:
Phương pháp:
Gọi số tự nhiên có 6 chữ số là \(\overline {{a_1}{a_2}{a_3}{a_4}{a_5}{a_6}} \left( {{a_i} \in \left\{ {0;1;2;3;4;5;6;7} \right\};{a_1} \ne 0} \right).\) Xét các trường hợp sau:
TH1: \({a_1} = 5;{a_2} \ge 4,{a_2} \ne 5.\)
TH2: \({a_1} > 5.\)
Cách giải:
Gọi số tự nhiên có 6 chữ số là \(\overline {{a_1}{a_2}{a_3}{a_4}{a_5}{a_6}} \left( {{a_i} \in \left\{ {0;1;2;3;4;5;6;7} \right\};{a_1} \ne 0} \right).\)
TH1: \({a_1} = 5;{a_2} \ge 4,{a_2} \ne 5 \Rightarrow \) có 3 cách chọn \({a_2}\) và có \(A_6^4\) cách chọn 4 chữ số còn lại \( \Rightarrow \) có \(3A_6^4\) số.
TH2: \({a_1} > 5 \Rightarrow \) có 2 cách chọn \({a_1}\) và \(A_7^5\) cách chọn 5 chữ số còn lại \( \Rightarrow \) có \(2A_7^5\) số.
Vậy có tất cả \(3A_6^4 + 2A_7^5 = 6120\) số thỏa mãn.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi M, N lần lượt là trung điểm của SA, SB, P là trọng tâm của tam giác BCD.
1. Chứng minh rằng: Đường thẳng MN song song với mặt phẳng \(\left( {SCD} \right).\)
2. Tìm giao tuyến của mp\(\left( {MNP} \right)\) và mp\(\left( {ABCD} \right)\).
3. Tìm giao điểm G của đường thẳng SC và mp\(\left( {MNP} \right).\) Tính tỷ số \(\frac{{SC}}{{SG}}.\)
Câu 3:
Câu 4:
Giải các phương trình lượng giác sau:
1. \({\sin ^2}x + 5\sin x\cos x + 6{\cos ^2}x = 6\)
2. \(\sqrt 3 \sin x + \cos x = 2\)
3. \(\cos 3x - \sin 2x - \cos x = 0\)
Câu 5:
Câu 6:
Câu 7:
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
20 câu trắc nghiệm Toán 11 Kết nối tri thức Mẫu số liệu ghép nhóm có đáp án
12 câu Trắc nghiệm Toán 11 Kết nối tri thức Giá trị lượng giác của góc lượng giác có đáp án
10 Bài tập Tổng của cấp số nhân lùi vô hạn và các bài toán liên quan (có lời giải)
15 câu Trắc nghiệm Đại cương về đường thẳng và mặt phẳng có đáp án (Nhận biết)
10 Bài tập Tính xác suất của biến cố hợp của hai biến cố bất kì bằng cách sử dụng công thức cộng xác suất và phương pháp tổ hợp (có lời giải)
10 Bài tập Vận dụng đạo hàm cấp hai để giải quyết một số bài toán thực tiễn (có lời giải)
10 Bài tập Trung vị, tứ phân vị của mẫu số liệu ghép nhóm và ý nghĩa (có lời giải)
về câu hỏi!