Câu hỏi:
11/07/2024 311Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Phương pháp:
Gọi số tự nhiên có 6 chữ số là \(\overline {{a_1}{a_2}{a_3}{a_4}{a_5}{a_6}} \left( {{a_i} \in \left\{ {0;1;2;3;4;5;6;7} \right\};{a_1} \ne 0} \right).\) Xét các trường hợp sau:
TH1: \({a_1} = 5;{a_2} \ge 4,{a_2} \ne 5.\)
TH2: \({a_1} > 5.\)
Cách giải:
Gọi số tự nhiên có 6 chữ số là \(\overline {{a_1}{a_2}{a_3}{a_4}{a_5}{a_6}} \left( {{a_i} \in \left\{ {0;1;2;3;4;5;6;7} \right\};{a_1} \ne 0} \right).\)
TH1: \({a_1} = 5;{a_2} \ge 4,{a_2} \ne 5 \Rightarrow \) có 3 cách chọn \({a_2}\) và có \(A_6^4\) cách chọn 4 chữ số còn lại \( \Rightarrow \) có \(3A_6^4\) số.
TH2: \({a_1} > 5 \Rightarrow \) có 2 cách chọn \({a_1}\) và \(A_7^5\) cách chọn 5 chữ số còn lại \( \Rightarrow \) có \(2A_7^5\) số.
Vậy có tất cả \(3A_6^4 + 2A_7^5 = 6120\) số thỏa mãn.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi M, N lần lượt là trung điểm của SA, SB, P là trọng tâm của tam giác BCD.
1. Chứng minh rằng: Đường thẳng MN song song với mặt phẳng \(\left( {SCD} \right).\)
2. Tìm giao tuyến của mp\(\left( {MNP} \right)\) và mp\(\left( {ABCD} \right)\).
3. Tìm giao điểm G của đường thẳng SC và mp\(\left( {MNP} \right).\) Tính tỷ số \(\frac{{SC}}{{SG}}.\)
Câu 3:
Câu 4:
Giải các phương trình lượng giác sau:
1. \({\sin ^2}x + 5\sin x\cos x + 6{\cos ^2}x = 6\)
2. \(\sqrt 3 \sin x + \cos x = 2\)
3. \(\cos 3x - \sin 2x - \cos x = 0\)
Câu 5:
Câu 6:
Câu 7:
về câu hỏi!