Câu hỏi:

08/02/2023 1,643 Lưu

Cho khối lăng trụ \(ABC.A'B'C'\) có thể tích là \(V\), thể tích của khối chóp \(C'.ABC\) là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Lời giải
Chọn C
Gọi \(h\) là khoảng cách từ \(C'\) đến mặt phẳng \(\left( {ABC} \right)\)\(B\) là diện tích tam giác \(ABC\). Khi đó, thể tích lăng trụ \(V = Bh\), thể tích khối chóp \(C'.ABC\)\[{V_{C'.ABC}} = \frac{1}{3}Bh\]. Do đó, \[{V_{C'.ABC}} = \frac{1}{3}V\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải
Chọn C
Hàm số đã cho liên tục và đơn điệu trên đoạn \(\left[ {1;2} \right]\). Khi đó, hàm số đạt giá trị lớn nhất và giá trị nhỏ nhất lần lượt tại \(x = 1\)\(x = 2\) hoặc ngược lại.
Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số là: \(y\left( 1 \right) + y\left( 2 \right) = 8 \Leftrightarrow \frac{{m + 1}}{2} + \frac{{m + 2}}{3} = 8 \Leftrightarrow m = \frac{{41}}{5}.\)

Câu 2

Lời giải

Lời giải
Chọn C
Ta có \(g'\left( x \right) = f'\left( x \right) - x - 3 = f'\left( x \right) - \left( {x + 3} \right)\).
Khi đó: \(g'\left( x \right) = 0 \Leftrightarrow f'\left( x \right) - \left( {x + 3} \right) = 0\)\( \Leftrightarrow f'\left( x \right) = \left( {x + 3} \right)\)\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = - 2}\\{x = 0{\rm{ }}}\\{x = 2{\rm{ }}}\end{array}} \right.\).
Lập Bảng biến thiên

Media VietJack

Dựa vào bảng biến thiên, ta thấy hàm số \(g\left( x \right)\) đồng biến trên khoảng \(\left( {2; + \infty } \right)\) nên suy ra được \(g\left( 2 \right) < g\left( 4 \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP