Câu hỏi:

11/07/2024 793

Cho bất phương trình m1x+121x216x+3m1+x+2m+15 . Tìm các giá trị nguyên của tham số m9;9  để bất phương trình đã cho nghiệm đúng với mọi x1;1  .

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Bpt: m1x+121x216x+3m1+x+2m+15

m1x31+x228x61x2+15 (1).

Ÿ Đặt t=1x31+x  với x1;1  .

t'=121x321+x<0   x1;1.

Suy ra  nghịch biến trên 1;1 .

Nên t1tt132t2  .

Ÿ Ta có t2=8x+1061x22t25=28x61x2+15 .

Khi đó (1) trở thành:mt22t25  với t32;2 .

m2t25t2 (2) với t32;2   (vì t32;2  nên t2<0 ).

 Xét hàm số ft=2t25t2  trên đoạn 32;2  .

f't=4tt22t25t22=2t28t+5t22.

f't=0t=4+62   ( loi)t=462 ( thõa mãn) 

f(32)=62932144,97; f(2)=2+221,7f462=8263,1

(1) nghiệm đúng với mọi x1;1 (2) nghiệm đúng với mọi t32;2

mmin32;2ft=f32=62932144,97.

Kết hợp với điều kiện bài toán ta có: mm9;9m62932144,97 .

m9;8;7;6;5

Vậy m9;8;7;6;5 .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn A

Nhìn vào đồ thị ta thấy:M=max2;1fx=1

m=min2;1fx=5

 

 

Lời giải

Chọn D

f'x=0xx+1x43=0x=0x=1x=4.

Lập bảng biến thiên của hàm số fx

Cho hàm số  f(x) có đạo hàm f'(x)=x(x+1)( x-4)^3, với mọi x thuộc R . Số điểm cực đại của hàm số đã cho là (ảnh 1)
Vậy hàm số đã cho có một điểm cực đại.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Đường cong trong hình là đồ thị của hàm số nào dưới đây?

Đường cong trong hình là đồ thị của hàm số nào dưới đây? (ảnh 1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Hàm số y=f(x) nghịch biến trên khoảng nào dưới đây? A(-2,0) (ảnh 1)

Hàm số y=f(x) nghịch biến trên khoảng nào dưới đây?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay