Câu hỏi:
11/02/2023 11,359Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
Gọi \(I\) là giao điểm của \(AC\) và \(BD.\)
Trong mặt phẳng \(\left( {ACC'A'} \right)\)\(AC'\) cắt \(A'I\) tại \(G.\)
Do \(AI\)song song \(A'C'\) và \(AI = \frac{1}{2}AC'\) nên \(IG = \frac{1}{2}GA'.\)
Suy ra \(G\) là trọng tâm tam giác \(A'BD\), mà tam giác \(A'BD\) đều (có các cạnh là các đường chéo của những hình vuông bằng nhau) nên \(GA' = GB = GD\) và \(AA' = AB = AD\) suy ra \(AG \bot (A'BD).\)
Do đó khoảng cách từ \(C'\)đến mặt phẳng \(\left( {A'BD} \right)\) là \(C'G.\)
Mặt khác \(C'G = \frac{2}{3}AC' = \frac{2}{3}AB\sqrt 3 = \frac{{4a\sqrt 3 }}{3} \Rightarrow AB = 2a.\) Vậy \(V = 8{a^3}.\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Trên khoảng \(\left( { - \pi \,;\,\pi } \right)\) đồ thị hàm số \(y = \sin x\) được cho như hình vẽ:
về câu hỏi!